

atlas book skeleton

J. David Eisenberg

atlas book skeleton
by J. David Eisenberg
Copyright © 2015
This is a legal notice of some kind. You can add notes about the kind of license
you are using for your book (e.g., Creative Commons), or anything else you feel
you need to specify.
If your book has an ISBN or a book ID number, add it here as well.

Table of Contents

Preface vii

CHAPTER 1: Functions and Variables 9

Étude 1-1: Defining a Function in the REPL 9

Étude 1-2: Defining Functions in a Source File 9

Étude 1-3: Using def 10

Étude 1-4: Using let 11

Étude 1-5: More Practice with def and let 12

CHAPTER 2: Interacting With JavaScript and Web Pages 15

Étude 2-1: Direct use of JavaScript 16

Invoking Methods 16

Accessing Properties 17

Creating JavaScript Objects 17

Listening for Events 18

Étude 2-2: Using Google Closure 18

Putting Google Closure into Your Project 19

Using Google Closure to Access the DOM 19

Using Google Closure to Handle Events 19

Étude 2-3: Using dommy 20

Putting dommy into Your Project 20

Using dommy to Access the DOM 21

Using dommy to Handle Events 21

iii

Étude 2-4: Using Domina 22

Putting Domina into Your Project 22

Using Domina to Access the DOM 23

Using Domina to Handle Events 23

Étude 2-5: Using Enfocus 24

Putting Enfocus into Your Project 24

Using Enfocus to Access the DOM 24

Using Enfocus to Handle Events 25

CHAPTER 3: Lists, Vectors, and Higher-Order Functions 27

Étude 3-1: Move the Zeros 27

Étude 3-2: More List Manipulation 27

Étude 3-3: Basic Statistics 29

Étude 3-4: Basic Statistics in a Web Page 30

Étude 3-5: Dental Hygiene 31

Étude 3-6: Random Numbers; Generating a Vector of Vectors 32

Étude 3-7: Monthly Daylight 33

CHAPTER 4: Maps 37

Étude 4-1: Condiments 37

Parsing XML 38

Command Line Arguments 39

Mutually Recursive Functions 39

Étude 4-2: Condiment Server 40

Setting up Express 40

Generating HTML from ClojureScript 41

Putting the Étude Together 42

Étude 4-3: Maps—Frequency Table 43

Reading the CSV File 45

Étude 4-4: Complex Maps—Cross-tabulation 46

Étude 4-5: Cross-Tabulation Server 47

CHAPTER 5: Programming with React 51

Étude 5-1: Reactive Programming with Quiescent 53

Hints 55

Table of Contents

iv

Étude 5-2: Reactive Programming with Reagent 56

Hints 57

CHAPTER 6: Interlude: Room Usage Project 59

Étude 6-1: Build the Data Structure 59

Étude 6-2: Visualizing the Data (Version 1) 60

Étude 6-3: Visualizing the Data (Version 2) 61

CHAPTER 7: Records and Protocols 63

Étude 7-1: Rational Numbers 64

Étude 7-2: Complex Numbers 65

Étude 7-3: Writing Tests 66

CHAPTER 8: Asynchronous processing 69

Étude 8-1: TBD 72

The Art of War 72

War: What is it good for? 73

Pay Now or Pay Later 73

The Design 74

Messages Are Asynchronous 75

Representing the Deck 75

Solutions 77

Setting Up Your ClojureScript Environment 125

Creating a ClojureScript Project with Leiningen 129

ClojureScript on the Server 135

Index 139

Table of Contents

v

Preface

What’s an Étude?

An étude, according to Wikipedia, is “an instrumental musical composition,
usually short and of considerable difficulty, usually designed to provide prac-
tice material for perfecting a particular musical skill.”

What are Études for ClojureScript?

In this book, you will find descriptions of programs that you can compose
(write) in ClojureScript. The programs will usually be short, and each one has
been designed to provide practice material for a particular ClojureScript pro-
gramming area. Unlike musical études, these programs have not been designed
to be of considerable difficulty, though they may ask you to stretch a bit beyond
the immediate material and examples that you find in most ClojureScript books
or online references.

These études are not intended to introduce you to individual ClojureScript
concepts. That ground is covered quite nicely by ClojureScript Koans, 4Clojure,
and ClojureScript Unraveled. Instead, these études take the form of small
projects that do something that is (somewhat) useful. They are much along the
lines of the programming katas given in chapter 10 of Living Clojure by Carin
Meier. If Koans, 4Clojure, and ClojureScript Unraveled ask you to write programs
at the level of chemical elements, in this book you are constructing simple mol-
ecules.

This book is open source, so if you’d like to contribute, make a correction, or
otherwise participate in the project, check out jdeisenberg/etudes-for-
clojurescript on GitHub for details. If we accept your work, we’ll add you to the
contributors chapter.

vii

http://clojurescriptkoans.com/
https://www.4clojure.com/
http://funcool.github.io/clojurescript-unraveled/
http://shop.oreilly.com/product/0636920034292.do
https://github.com/jdeisenberg/etudes-for-clojurescript
https://github.com/jdeisenberg/etudes-for-clojurescript

Acknowledgments

Thanks to Simon St. Laurent and Meghan Blanchette at O’Reilly Media, who en-
couraged me to write this book. Thanks also to all the people on the #clo-
jurescript IRC channel, who patiently answered my questions.

viii

Preface

Functions and Variables

This chapter starts with a couple of “warm-up exercises” so that you can get
comfortable with your ClojureScript development environment. First, a quick
review of how to define functions. Here is the generic model for a function:

(defn function-name [parameters] function-body)

Here is a function that takes an acceleration and an amount of time as its
parameters and returns the distance traveled:

(defn distance [accel time] (/ (* accel time time) 2.0)

You can also put a documentation string between the function name and pa-
rameter list:

(defn distance
 "Calculate distance traveled by an object moving
 with a given acceleration for a given amount of time."
 [accel time]
 (/ (* accel time time) 2.0)

Étude 1-1: Defining a Function in the REPL

Create a project named formulas (see “Creating a ClojureScript Project”) and
start a browser REPL (Read/Evaluate/Print/Loop). If you haven’t yet installed
ClojureScript, follow the instructions in Appendix B and create a project to
work with. In the REPL, type the preceding distance function and test it.

Étude 1-2: Defining Functions in a Source File

Defining functions in the REPL is fine for a quick test, but it is not something
you want to do on an application-level scale. Instead, you want to define the

9

1

functions in a source file. In the formulas project, open the src/formulas/core.cljs
file and create functions for these formulas:

• Distance equals one-half acceleration multplied by time squared:

d = 1
2at2

• Kinetic energy equals one-half the mass times velocity squared:

𝐾𝐸 = 1
2mv2

• Centripetal acceleration is velocity squared over the radius: ac =
v2
r

Here is some sample output. (in-ns 'formulas.core) switches you to
that namespace so that you can type the function name without having to spec-
ify the module that it is in. If you update the source, (require 'formu-
las.core :reload) will recompile the code.

cljs.user=> (in-ns 'formulas.core)
nil
formulas.core=> (require 'formulas.core :reload)
nil
formulas.core=> (distance 9.8 5)
122.5
formulas.core=> (kinetic-energy 35 4)
280
formulas.core=> (centripetal 30 2)
450

See a suggested solution: “Solution 1-2”

Étude 1-3: Using def

The def special form lets you bind a symbol to a value. The symbol is globally
available to all functions in the namespace where it is defined. Add a function
named gravitational-force that calculates the gravitational force between
two masses whose centers of mass are at a distance r from each other to your
code:

F =
Gm1m2

r2
, where the gravitational constant G = 6.67384 × 10−11.

Use a def for the gravitational constant.
Here is the calculation for two masses of 100kg that are 5 meters apart:

formulas.core=> (gravitational-force 100 100 5)
2.67136e-8

CHAPTER 1: Functions and Variables

10

1 Technically, let is followed by a vector of binding forms and values. Binding forms include
destructuring as well as simple symbols.

REDEFINING AND DEF

ClojureScript’s def creates an ordinary JavaScript variable. While it is
possible to rebind a symbol to a value with code like this:

(def x 5)

 (def x 6)

 (def x (+ 1 x))

It is somewhat frowned upon. Global, shared, mutable (changeable) vari-
ables can be problematic, as described in this answer to a question on
StackExchange. You will find that ClojureScript’s functional program-
ming model makes the need for such global variables much less fre-
quent. As a beginning programmer, when you create a variable with def,
treat it as if it were an (unalterable) algebraic variable and do not change
its value.

See a suggested solution: “Solution 1-3”

Étude 1-4: Using let

To create local bindings of symbols to values within a function, you use let.
The let is followed by a vector of symbol and value pairs.1

In this étude, you will write a function named monthly-payment that calcu-
lates monthly payments on a loan. Your function will take the amount of the
loan, the annual percentage rate, and the number of years of the loan as its
three parameters. Calculate the monthly payment according to this formula:

𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = p ⋅ r(1 + r)n

(1 + r)n − 1

• p is the principal (the amount of the loan)
• r is the monthly interest rate
• n is the number of months of the loan

Use let to make local bindings for:

• The monthly interest rate r, which equals the annual rate divided by 12
• The number of months n, which equals the number of years times 12

• The common sub-formula (1 + r)n
To raise a number to a power, invoke the JavaScript pow function with
code in this format:

Étude 1-4: Using let

11

http://programmers.stackexchange.com/a/148109
http://programmers.stackexchange.com/a/148109

(.pow js/Math number power)
;; Thus, to calculate 3 to the fifth power:
(.pow js/Math 3 5)

You can also use this shorthand:

(js/Math.pow 3 5)

You will learn more about interacting with JavaScript in Chapter 2.

Here is some sample output for a loan of $1,000.00 at 5.5% for 15 years. You
can also check the results of your function against the results of the PMT func-
tion in your favorite spreadsheet.

formulas.core=> (monthly-payment 1000 5.5 15).
8.17083454621138

See a suggested solution: “Solution 1-4”

Étude 1-5: More Practice with def and let

Here’s a somewhat more complicated formula―determining the amount of
sunlight in a day, given the day of year and the latitude of your location. Write a
function named daylight with two parameters: a latitude in degrees and a Ju-
lian day. The function returns the number of minutes of sunshine for the day,
using the formula explained at the “Ask Dr. Math” web site. The latitude is in
degrees, but JavaScript’s trigonometric functions use radians, so you will need
a function to convert degrees to radians, and I’ll give you that for free:

(defn radians
 "Convert degrees to radians"
 [degrees]
 (* (/ (.-PI js/Math) 180) degrees))

The expression (.-PI js/Math) gets the PI property of the JavaScript
Math object.

• You will want a variable that holds the latitude converted to radians.
• Calculate

P = arcsin(0.39795 ⋅ cos(0.2163108
+ 2 ⋅ arctan(0.9671396 ⋅ tan(0.00860 ⋅ (𝑑𝑎𝑦 − 186)))))

• Calculate

D = 24 − 7.63944 ⋅ arccos sin(0.01454) + sin(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) ⋅ sin(p)
cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) ⋅ cos(p)

CHAPTER 1: Functions and Variables

12

http://mathforum.org/library/drmath/view/56478.html

The variable D holds the number of hours of daylight, so multiply that by 60
for your final result. If you feel that these formulas are a bit too complicated to
type as single expressions (I certainly did!), break them down by using let for
the parts.

On Mac OSX or Linux, you can get a Julian date with the date command:

$ date '+%j' # today
127
$ date -d '2015-09-15' '+%j' # arbitrary date
258

Your results should be very close to those generated by the National Ocean-
ic and Atmospheric Administration spreadsheets, which use a far more com-
plicated algorithm than the one given here.

See a suggested solution: “Solution 1-5”

Étude 1-5: More Practice with def and let

13

http://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html
http://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html

Interacting With JavaScript and
Web Pages

Since ClojureScript compiles to JavaScript, you need to have a way to interact
with native JavaScript and with web pages. In this chapter, you will find out five
different ways to do this:

1. Direct use of JavaScript
2. The Google Closure library
3. The Dommy library
4. The Domina library
5. The Enfocus library

All of these methods are fairly “old school.” As of this writing, all
the Cool Kids™ are using libraries such as Facebook’s React to
handle the user interface. I still think it is useful to have knowledge
of the older methods, as they might sometimes be the right tool to
solve a problem. However, if you want, see Chapter 5.

You’ll be doing the same task with each of these: calculating the number of
hours of daylight based on a latitude and Julian date, as in “Étude 1-5: More
Practice with def and let”. Here is the relevant HTML:

<!DOCTYPE html>
<html>
 <head>
 <title>Daylight Minutes</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 </head>
 <body>
 <h1>Daylight Minutes</h1>
 <p>
 Latitude: <input type="text" size="8" id="latitude" />°

 Day of year: <input type="text" size="4" id="julian" />

15

2

http://facebook.github.io/react/

 <input type="button" value="Calculate" id="calculate"/>
 </p>

 <p>
 Minutes of daylight:
 </p>

 <script src="out/project_name.js" type="text/javascript"></script>
 </body>
</html>

I suggest you create a new project for each of these études and copy the pre-
ceding HTML into the project’s index.html file. Remember to make the src at-
tribute of the script element match your project name.

If your project name has a hyphen in it, such as my-project, Clo-
jure and ClojureScript will convert the hyphens to underscores when
creating directories, so you will end up with a src/my_project
directory.

Étude 2-1: Direct use of JavaScript

This is the most direct method to interact with a page, and is the least
ClojureScript-like in its approach.

Invoking Methods

In order to invoke JavaScript methods directly, you use expressions of the gen-
eral form:

(.methodname JavaScript object arguments)

Here are some examples you can try in the REPL.

;; call the sqrt function from JavaScript's Math object with an argument 3
(.sqrt js/Math 3)

;; equivalent of window.parseFloat("3.5")
(.parseFloat js/window "3.5")

;; equivalent of "shouting".toUpperCase()
(.toUpperCase "shouting")

;; equivalent of "ClojureScript".substr(2,3)
(.substr "ClojureScript" 2 3)

CHAPTER 2: Interacting With JavaScript and Web Pages

16

;; equivalent of document.getElementById("latitude")
(.getElementById js/document "latitude")

You can also use a different form for methods that belong to the special js
namespace. (It is not a real ClojureScript namespace, as it references the under-
lying JavaScript structure rather than ClojureScript code).

;; call the sqrt function from JavaScript's Math object with an argument 3
(js/Math.sqrt 3)

;; equivalent of window.parseFloat("3.5")
(js/Window.parseFloat "3.5")

;; equivalent of document.getElementById("latitude")
(js/document.getElementById "latitude")

Accessing Properties

To access an object’s properties, use .-; before you try these in the browser
REPL, type something into the latitude field in the form.

;; equivalent of Math.PI
(.-PI js/Math)

;; equivalent of "ClojureScript".length
(.-length "ClojureScript")

;; equivalent of document.getElementById("latitude").value
(.-value (.getElementById js/document "latitude"))

;; setting properties: equivalent of document.getElementById("latitude").value = 23.5;
(set! (.-value (.getElementById js/document "latitude")) 23.5)

Creating JavaScript Objects

This étude doesn’t need you to create any JavaScript objects, but if you are in-
teracting with an existing library you may need to do so. To create an object,
give the class name followed by a period:

;; equivalent of d = new Date
(def d (js/Date.))

;; now you can use it
(.getHours d)

Étude 2-1: Direct use of JavaScript

17

;; if you need a true JavaScript Array object
(def arr (js/Array. 10 20 30))
(get arr 2)

Listening for Events

In JavaScript, if you want an HTML element to respond to an event, you add an
event listener to that element, tell it what type of event you want to listen for,
and give it the name of a function that handles the event. That event handling
function must have one parameter to hold the event object. In ClojureScript,
you need to define functions before you use them, so you have to write the
event handler first and then invoke addEventListener. Here is an example of
what I did in the REPL (my project name was daylight-js.

cljs.user=> (in-ns 'daylight-js.core)
nil
daylight-js.core=> (defn testing [evt] (.alert js/window "You clicked me!!!"))
#<function daylight-js$core$testing(evt){
return window.alert("You clicked me!!!");
}>
daylight-js.core=> (let [btn (.getElementById js/document "calculate")]
(.addEventListener btn "click" testing))
nil

The first line switches to the correct namespace for the project. The second
line defines the event handler, which calls JavaScript’s alert() function to dis-
play a message. The third line tells the “Calculate” button to listen for click
events and call the testing function when they occur.

Given this information, complete the code for the project such that, when
you click the “Calculate” button, the program will read the values from the lati-
tude and Julian day field, calculate the number of daylight hours, and place the
result in the . (Hint: use the innerHTML property.) You
may also want to write a function that takes a form field name as its argument
and returns the floating-point value from that field.

See a suggested solution: “Solution 2-1”

Étude 2-2: Using Google Closure

Using JavaScript directly is all well and good; one advantage is that (if you’re a
JavaScript programmer), you already know this stuff. The bad news is that you
have all the problems of getting JavaScript to work on multiple browsers and
platforms. Enter Google Closure, a library of JavaScript utilities that has all of

CHAPTER 2: Interacting With JavaScript and Web Pages

18

https://developers.google.com/closure/

those nasty compatibility parts all figured out for you. In this étude, you’ll use
Closure for the interaction.

Putting Google Closure into Your Project

To use Google Closure, you need to change the first lines of your core.cljs file to
require the code that maniuplates the DOM and handles events. In this exam-
ple, the project has been named daylight-gc.

(ns daylight-gc.core
 (:require [clojure.browser.repl :as repl]
 [goog.dom :as dom]
 [goog.events :as events]))

In the REPL, type (require 'goog.dom :as dom) to access the code.

Using Google Closure to Access the DOM

When accessing DOM elements, the main difference between Closure and pure
JavaScript is that you use dom/getElement instead of .getElementById js/
document. Thus, after starting the browser REPL and typing 55 into the latitude
input area:

cljs.user=> (require 'daylight-gc.core)
nil
cljs.user=> (in-ns 'daylight-gc.core)
nil
daylight-gc.core=> (require '[goog.dom :as dom])
nil
daylight-gc.core=> (dom/getElement "latitude")
#<[object HTMLInputElement]>
daylight-gc.core=> (.-value (dom/getElement "latitude"))
"55"
daylight-gc.core=> (set! (.-value (dom/getElement "latitude")) -20)
-20
daylight-gc.core=> ;; Closure has its own way to set an element's text
daylight-gc.core=> (dom/setTextContent (dom/getElement "result") "Here is some text")
nil

Using Google Closure to Handle Events

Again, the code is quite similar to what you would do with plain JavaScript; you
use events/listener instead of .addListener. The following adds a listener
to the “Calculate” button.

Étude 2-2: Using Google Closure

19

daylight-gc.core=> (defn testing [evt] (.alert js/window "Clickety-click"))
#'daylight-gc.core/testing
daylight-gc.core=> (events/listen (dom/getElement "calculate") "click" testing)
#<[object Object]>

After you test it, you may want to remove the listener so that it doesn’t inter-
fere with the code you put in your source core.cljs file.

daylight-gc.core=> (events/unlisten (dom/getElement "calculate") "click" testing)
true

Given this information, complete the code for the project. Note: If you cre-
ated a new project and just copy/pasted the index.html file, make sure you
change the <script> element to refer to the right file.

See a suggested solution: “Solution 2-2”

Étude 2-3: Using dommy

While Google Closure gives you a lot of great code, it’s still JavaScript, and it
“feels” like JavaScript. What you would like is a library that gives you the capa-
bilities but in a more functional way. One of those libraries is dommy. In this
étude, you will use dommy to interact with the web page.

Putting dommy into Your Project

To use dommy, you need to change the first lines of your core.cljs file to require
the code that maniuplates the DOM and handles events. In this example, the
project has been named daylight-dommy.

(ns daylight-dommy.core
 (:require [clojure.browser.repl :as repl]
 [dommy.core :as dommy :refer-macros [sel sel1]]))

The :refer-macros is new, and beyond the scope of this book. The over-
simplified explanation is that ClojureScript macros are like functions with extra
super powers. I will explain the sel and sel1 later.

You also need to change the project.clj file to specify dommy as one of your
project’s dependencies. The additional code is highlighted:

 :dependencies [[org.clojure/clojure "1.7.0-beta2"]
 [org.clojure/clojurescript "0.0-3211"]
 [prismatic/dommy "1.1.0"]]

CHAPTER 2: Interacting With JavaScript and Web Pages

20

https://github.com/Prismatic/dommy

Using dommy to Access the DOM

Dommy has two functions for accessing elements: sel1 and sel. sel1 will re-
turn a single HTML node; sel will return a JavaScript array of all matching ele-
ments. The index.html file has three <input/> elements. Compare the results:

cljs.user=> ;; set up name spaces
cljs.user=> (require 'daylight-dommy.core)
nil
cljs.user=> (in-ns 'daylight-dommy.core)
nil
daylight-dommy.core=> (require '[dommy.core :as dommy :refer-macros [sel sel1]])
nil
daylight-dommy.core=> ;; access the first <input> element
daylight-dommy.core=> (sel "input")
#<[object HTMLInputElement]>
daylight-dommy.core=> ;; access all the <input> elements
daylight-dommy.core=> (sel1 "input")
#js [#<[object HTMLInputElement]> #<[object HTMLInputElement]> #<[object HTMLInputElement]>]
daylight-dommy.core=> ;; since IDs are unique, you use sel1 for them.
daylight-dommy.core=> (sel1 "#latitude")
#<[object HTMLInputElement]>

To access values of form fields, use dommy’s value and set-value! func-
tions. (I typed 55 into the latitude field before doing these commands.) Similar-
ly, text and set-text! let you read and write text content of elements. html
and set-html! let you read and write HTML content of an element. Notice that
you can use either a string or a keyword as an argument to sel.

daylight-dommy.core=> ;; retrieve and set form field
daylight-dommy.core=> (dommy/value (sel1 "#latitude"))
"55"
daylight-dommy.core=> (dommy/set-value! (sel1 "#latitude") 10.24)
#<[object HTMLInputElement]>
daylight-dommy.core=> ;; set and retrieve text content
daylight-dommy.core=> (dommy/set-text! (sel1 :#result) "some text")
#<[object HTMLSpanElement]>
daylight-dommy.core=> (dommy/text (sel1 :#result))
"some text"
daylight-dommy.core-> (dommy/set-html! (sel1 :#result) "<i>Yes!</i>")

Using dommy to Handle Events

Here is the code to add and remove an event listener. You may use either key-
words or strings for event names. If you use a keyword for the event name, such

Étude 2-3: Using dommy

21

as :click when you listen for events, you must use a keyword when you re-
move the listener.

daylight-dommy.core=> (defn testing [event] (.alert js/window "Clicked."))
#'daylight-dommy.core/testing
daylight-dommy.core=> (dommy/listen! (sel1 :#calculate) :click testing)
#<[object HTMLInputElement]>
daylight-dommy.core=> ;; the web page should now respond to clicks. Try it.
daylight-dommy.core=> ;; now remove the listener.
daylight-dommy.core=> (dommy/unlisten! (sel1 "#calculate") :click testing)
#<[object HTMLInputElement]>
daylight-dommy.core=>

Given this information, complete the code for the project. Note: If you cre-
ated a new project and just copy/pasted the index.html file, make sure you
change the <script> element to refer to the right file.

See a suggested solution: “Solution 2-3”

Étude 2-4: Using Domina

The Domina library is very similar in approach to dommy. In this étude, you will
use Domina to interact with the web page.

Putting Domina into Your Project

To use Domina, you need to change the first lines of your core.cljs file to require
the code that maniuplates the DOM and handles events. In this example, the
project has been named daylight-domina.

(ns daylight-domina.core
 (:require [clojure.browser.repl :as repl]
 [domina]
 [domina.events :as events]))

You also need to change the project.clj file to specify domina as one of your
project’s dependencies. The additional code is highlighted:

 :dependencies [[org.clojure/clojure "1.7.0"]
 [org.clojure/clojurescript "1.7.48"]
 [domina "1.0.3"]]

CHAPTER 2: Interacting With JavaScript and Web Pages

22

https://github.com/levand/domina

Using Domina to Access the DOM

In Domina, you can access an item by its ID, by a CSS class, or by an XPath ex-
pression. This étude only uses the first of these methods with the by-id func-
tion.

cljs.user=> ;; set up name spaces
cljs.user=> (require 'daylight-domina.core)
nil
cljs.user=> (in-ns 'daylight-domina.core)
nil
daylight-domina.core=> (require 'domina)
nil
daylight-domina.core=> (require '[domina.events :as events])
nil
daylight-domina.core=> (domina/by-id "latitude")
#<[object HTMLInputElement]>

To access values of form fields, use Domina’s value and set-value! func-
tions. (I typed 55 into the latitude field before doing these commands.) Similar-
ly, text and set-text! let you read and write text content of elements. html
and set-html! let you read and write HTML content of an element. Notice that
you can use either a string or a keyword as an argument to sel.

daylight-domina.core=> ;; retrieve and set form field
daylight-domina.core=> (domina/value (domina/by-id "latitude"))
"55"
daylight-domina.core=> (domina/set-value! (domina/by-id "latitude") 10.24)
#<[object HTMLInputElement]>
daylight-domina.core=> ;; set and retrieve text content
daylight-domina.core=> (domina/set-text! (domina/by-id :result) "Testing 1 2 3")
#<[object HTMLSpanElement]>
daylight-domina.core=> (def resultspan (domina/by-id :result)) ;; to save typing
#<[object HTMLSpanElement]>
daylight-domina.core=> (domina/text resultspan)
"Testing 1 2 3"
daylight-domina.core-> (domina/set-html! resultspan "<i>Yes!</i>")#
<[object HTMLSpanElement]>
daylight-domina.core=> ;; look at web page to see result

Using Domina to Handle Events

Here is the code to add and remove an event listener. You may use either key-
words or strings for event names. You may use either a string or keyword when
you remove the listener. The unlisten! function removes all listeners associ-
ated with the event type.

Étude 2-4: Using Domina

23

daylight-domina.core=> (defn testing [event] (.alert js/window "You clicked me."))
#'daylight-domina.core/testing
daylight-domina.core=> (events/listen! (domina/by-id "calculate") :click testing)
#<[object HTMLInputElement]>
daylight-domina.core=> ;; the web page should now respond to clicks. Try it.
daylight-domina.core=> ;; now remove the listener.
daylight-domina.core=> (events/unlisten! (domina/by-id "calculate") "click")
#<[object HTMLInputElement]>
daylight-domina.core=>

Given this information, complete the code for the project. Note: If you cre-
ated a new project and just copy/pasted the index.html file, make sure you
change the <script> element to refer to the right file.

See a suggested solution: “Solution 2-4”

Étude 2-5: Using Enfocus

The Enfocus library is very different from dommy and Domina.

Putting Enfocus into Your Project

To use Enfocus, you need to change the first lines of your core.cljs file to require
the code that maniuplates the DOM and handles events. In this example, the
project has been named daylight-enfocus.

(ns daylight-dommy.core
 (:require [clojure.browser.repl :as repl]
 [enfocus.core :as ef]
 [enfocus.events :as ev]))

You also need to change the project.clj file to specify Enfocus as one of your
project’s dependencies. The additional code is highlighted:

 :dependencies [[org.clojure/clojure "1.7.0-beta2"]
 [org.clojure/clojurescript "0.0-3211"]
 [enfocus "2.1.0"]]

Using Enfocus to Access the DOM

The idea behind Enfocus is that you select a node and then do transformations
on it. This is a very powerful concept, but this étude will use only its simplest
forms. First, set up namespaces:

CHAPTER 2: Interacting With JavaScript and Web Pages

24

https://github.com/ckirkendall/enfocus

cljs.user=> (require 'daylight-enfocus.core)
nil
cljs.user=> (in-ns 'daylight-enfocus.core)
nil
daylight-enfocus.core=> (require '[enfocus.core :as ef])
nil
daylight-enfocus.core=> (require '[enfocus.events :as ev])
nil

Enfocus lets you select an element by its ID either as a CSS selector, an En-
live selector, or an XPath Selector. In this case, let’s just stick with the old fami-
lar CSS form. To access values of form fields, use Enfocus’s from function to se-
lect the field, then use the get-prop transformation to extract the value. (I ty-
ped 55 into the latitude field before doing these commands.) Similarly, at se-
lects an element you want to alter, and the content and html-content trans-
formation lets you set an element’s content.

daylight-enfocus.core=> (ef/from "#latitude" (ef/get-prop :value))
"55"
daylight-enfocus.core=> (ef/at "#latitude" (ef/set-prop :value 10.24))
nil
daylight-enfocus.core=> (ef/at "#result" (ef/content "New text"))
nil
daylight-enfocus.core=> (ef/at "#result" (ef/html-content "<i>Improved text</i>"))
nil
daylight-enfocus.core=> ;; look at web page to see result

Note: when you use the content transformation, the argument must be a
string or a node. You can’t use a number―you must convert it to a string:

daylight-enfocus.core=> (ef/at "#result" (ef/content (.toString 3.14159)))
nil

Using Enfocus to Handle Events

Here is the code to add and remove an event listener.

daylight-enfocus.core=> (defn testing [evt] (.alert js/window "Click-o-rama"))
#'daylight-enfocus.core/testing
daylight-enfocus.core=> (ef/at "#calculate" (ev/listen :click testing))
nil
daylight-enfocus.core=> ;; the web page should now respond to clicks. Try it.
daylight-enfocus.core=> ;; now remove the listener.
daylight-enfocus.core=> (ef/at "#calculate" (ev/remove-listeners :click))
nil

Étude 2-5: Using Enfocus

25

https://github.com/cgrand/enlive
https://github.com/cgrand/enlive

Given this information, complete the code for the project. Note: If you cre-
ated a new project and just copy/pasted the index.html file, make sure you
change the <script> element to refer to the right file.

See a suggested solution: “Solution 2-5”

CHAPTER 2: Interacting With JavaScript and Web Pages

26

Lists, Vectors, and Higher-
Order Functions

In this chapter, you will work with lists and vectors, along with the map, filter,
and reduce functions. All of these take functions as one of their arguments,
and are thus higher-order functions.

Étude 3-1: Move the Zeros

This is a quick warm-up étude: Given a list of integers that have zeros inters-
pered throughout, move all the zeros to the end. Name the function move-
zeros; it accepts a list as an argument and returns a new list with the zeros at
the end. I saw the problem at this page, solved in Java, and wondered if I could
do it in ClojureScript. Answer: Yes, I could. And so can you. Hint: filter is use-
ful. After I solved it, I realized just how much my thinking about functional pro-
gramming had changed the way I look at imperative code. You may have the
same experience.

move-zeros.core=> (move-zeros [1 0 0 2 0 3 0 4 5 0 6])
(1 2 3 4 5 6 0 0 0 0 0)

See a suggested solution: “Solution 3-1”

Étude 3-2: More List Manipulation

Write a function named ordinal-day that takes a day, month, and year as its
three arguments and returns the ordinal (Julian) day of the year. Bonus points if
you return zero for invalid dates such as 29-02-2015 or 40-40-2015. Don’t worry
about handling dates before the year 1584 correctly.

You will need to know if a year is a leap year or not. I’ll give you that one for
free:

27

3

http://javaconceptoftheday.com/how-to-separate-zeros-from-non-zeros-in-an-array/

(defn leap-year?
 "Return true if given year is a leap year; false otherwise"
 [year]
 (or (and (= 0 (rem year 4)) (not= 0 (rem year 100)))
 (= 0 (rem year 400))))

Some sample output from the REPL:

formulas.core=> (ordinal-day 1 3 2015)
60
formulas.core=> (ordinal-day 1 3 2016)
61
formulas.core=> (ordinal-day 1 13 2015)
0
formulas.core=> (ordinal-day 29 2 2015)
0
formulas.core=> (ordinal-day 29 2 2016)
60
formulas.core=> (ordinal-day 31 9 2015)
0

Then, modify the daylight calculator from Chapter 2 to allow entry of a date
in the form yyyy-mm-dd. You will need to split the input data into individual
numbers. You could use the split method for JavaScript strings, or you can
use the split method from the clojure.string library. If you want to use the
latter method, you will need to add that library to your require:

(ns stats.core
 (:require [clojure.browser.repl :as repl]
 [clojure.string :as str]))

To specify a regular expression for split, prefix a string with #. Here is some
sample output from the REPL. Using JavaScript’s split returns a JavaScript ar-
ray. Notice that you do not need to escape backslashes in patterns (see the last
example).

formula.core=> (require '[clojure.string :as str])
nil
formula.core=> (.split "a:b:c:d" #":")
#js ["a" "b" "c" "d"]
formula.core=> (str/split "a:b:c:d" #":")
["a" "b" "c" "d"]
formula.core=> (str/split "abc123def456ghi789jkl" #"\d+")
["abc" "def" "ghi" "jkl"]
formula.core=>

CHAPTER 3: Lists, Vectors, and Higher-Order Functions

28

Bonus points: display the daylight as hours and minutes. Here is the relevant
HTML to put in your index.html file:

<h1>Amount of Daylight</h1>
<p>
Latitude: <input type="text" size="8" id="latitude" />°

Enter date in format yyyy-mm-dd: <input type="text" size="15" id="gregorian" />

<input type="button" value="Calculate" id="calculate"/>
</p>

<p>
Amount of daylight:
</p>

See a suggested solution: “Solution 3-2”

Étude 3-3: Basic Statistics

Create a project named stats and write these functions, each of which takes a
list of numbers as its argument:

• mean: calculates the arithmetic average of the list by summing the num-
bers (hint: use reduce or apply +) and dividing by the number of items
in the list.

• median: calculates the median of the numbers. The algorithm is as fol-
lows:

◦ Sort the list (hint: use sort)
◦ If n, the number of items in the list, is odd, take the item at position

(n − 1) / 2.
◦ Otherwise, take the average of the items at positions n / 2 and

(n − 1) / 2
I used drop in my solution rather than nth

• stdev: calculates the standard deviation of the numbers. Use the compu-

tational formula:
∑ x2 − (∑ x)2

n
(n − 1) , which works out to this algorithm.

1. Get the sum of the squares of all the numbers in the list
2. Get the sum of all the numbers of the list, and square that result.
3. Divide the result of step two by n
4. Subtract the result of step three from the result of step one.
5. Divide the result of step four by n—1
6. Take the square root of the result of step five.

Étude 3-3: Basic Statistics

29

You could write two functions, one to get the sum of the list and another
to get the sum of squares (hint: use reduce), but, as a challenge, try to
write a single function to get both numbers. Hint: There is no law that
says the “accumulator” of the function that you give to reduce has to be
a single number. It could just as well be a vector of two items. If you take
this approach, you might want to make the reducing function a separate
function rather than an anonymous function.

See a suggested solution: “Solution 3-3”

Étude 3-4: Basic Statistics in a Web Page

Now that you have the functions working, connect them to a web page where
people can enter a list of numbers and the program will display the resulting
statistics when the input field changes. Here’s the HTML:

<!DOCTYPE html>
<html>
 <head>
 <title>Basic Statistics</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 </head>
 <body>
 <h1>Basic Statistics</h1>
 <p>
 Enter numbers, separated by blanks or commas:
 <input type="text" size="50" id="numbers"/>
 </p>

 <p>
 Mean:

 Median:

 Standard deviation:
 </p>

 <script src="out/stats.js" type="text/javascript"></script>
 </body>
</html>

Once you have the individual items, you have to use js/window.parse-
Float to convert them to numbers. You must do this because ClojureScript’s
(and JavaScript’s) + operator works differently on strings than on numbers:
(+ "12" "30") works out to "1230", not 42. Hint: use map.

Use whichever method of interacting with JavaScript (see Chapter 2) that
you prefer. In this étude you will listen for a change event, and you may want to

CHAPTER 3: Lists, Vectors, and Higher-Order Functions

30

use the JavaScript event.target property. Given a function like (defn han-
dler [evt] ...), here is how you access the value of a form field via the tar-
get property:

Library ClojureScript

JavaScript
Google Closure (.-value (.-target evt))

dommy (dommy/value (.-target evt))

Domina (domina/value (domina.events/target evt))

Enfocus (ef/at (.-target evt) (ef/get-prop :value))

See a suggested solution: “Solution 3-4”

Étude 3-5: Dental Hygiene

OK, I’ll admit this is a fairly strange étude, but I couldn’t resist. Dentists check
the health of your gums by checking the depth of the “pockets” at six different
locations around each of your 32 teeth. The depth is measured in millimeters. If
any of the depths is greater than or equal to four millimeters, that tooth needs
attention. (Thanks to Dr. Patricia Lee, DDS, for explaining this to me.)

Your task is to write a function named alert that takes a vector of 32 vec-
tors of six numbers as its input. If a tooth isn’t present, it is represented by the
empty vector [] instead of the six numbers. The function produces a list of the
tooth numbers that require attention. The numbers must be in ascending order.

Here’s a definition of a set of pocket depths for a person who has had her
upper wisdom teeth, numbers 1 and 16, removed. Just copy and paste it into
your project. Note that list entries may be separated by either a comma or by
spaces.

(def pocket-depths
 [[], [2 2 1 2 2 1], [3 1 2 3 2 3],
 [3 1 3 2 1 2], [3 2 3 2 2 1], [2 3 1 2 1 1],
 [3 1 3 2 3 2], [3 3 2 1 3 1], [4 3 3 2 3 3],
 [3 1 1 3 2 2], [4 3 4 3 2 3], [2 3 1 3 2 2],
 [1 2 1 1 3 2], [1 2 2 3 2 3], [1 3 2 1 3 3], [],
 [3 2 3 1 1 2], [2 2 1 1 3 2], [2 1 1 1 1 2],
 [3 3 2 1 1 3], [3 1 3 2 3 2], [3 3 1 2 3 3],
 [1 2 2 3 3 3], [2 2 3 2 3 3], [2 2 2 4 3 4],
 [3 4 3 3 3 4], [1 1 2 3 1 2], [2 2 3 2 1 3],
 [3 4 2 4 4 3], [3 3 2 1 2 3], [2 2 2 2 3 3],
 [3 2 3 2 3 2]])

Étude 3-5: Dental Hygiene

31

And here’s the output:

cljs.user=> (in-ns 'teeth.core)
nil
teeth.core=> (alert pocket-depths)
[9 11 25 26 29]
teeth.core=>

See a suggested solution: “Solution 3-5”

Étude 3-6: Random Numbers; Generating a Vector
of Vectors

How do you think I got the numbers for the teeth in the preceding étude? Do
you really think I made up and typed all 180 of them? No, of course not. Instead,
I wrote a ClojureScript program to create the vector of vectors for me, and that’s
what you’ll do in this étude.

ClojureScript is luckily provided with the rand function. It generates a ran-
dom floating point number from 0 up to but not including 1 (if given no argu-
ment), or, if given a single argument n, returns a random floating value from 0
up to n. More useful for this étude is the rand-int function, which takes one
argument n and returns a random integer from 0 up to but not including n.

Create a project named make_teeth and write a function generate-
pockets that takes two arguments. The first argument is a string consisting of
the letters T and F. A T indicates that the tooth is present, and an F indicates a
missing tooth. The second argument is a floating point number between 0 and
1.0 (inclusive) that indicates the probability that a tooth will be a good tooth.

The result is a vector of vectors, one sub-vector per tooth. If a tooth is
present, the sub-vector has six entries; if a tooth is absent, the sublist is empty:
[]. Here is some sample output from the REPL.

make_teeth.core=> (generate-pockets "TFTT" 0.75)
[[1 2 2 3 1 1] [] [2 3 1 1 3 2] [4 2 2 3 2 3]]

These are the helper functions I needed:

(generate-list teeth-present probability result)

The first two arguments are the same as for generate_pockets; the third
argument is the accumulated list. If a tooth isn’t present, add [] to the re-
sult; otherwise add the return value of generate_tooth with the probabili-
ty of a good tooth as its argument.

CHAPTER 3: Lists, Vectors, and Higher-Order Functions

32

(one-tooth present probability)

This function takes as its arguments a single-character string ("T" or "F") to
signiify the presence or absence of a tooth, and the probability of a good
tooth. If there’s no tooth, it returns []. Otherwise, it sets a “base depth” for
all the pockets by generating a random number between 0 and 1. If that
number is less than the probability of a good tooth, base depth is 2, other-
wise it’s 3. It then generates a vector of six numbers, each time randomly
adding an integer from -1 to 1 to the base depth.

I imagine that, with a great deal of effort, I could have found a way to use
map and reduce to give me the results I wanted, but I was too lazy. Instead, I
used recur in generate-list and loop/recur in one-tooth.

See a suggested solution: “Solution 3-6”

Étude 3-7: Monthly Daylight

This étude puts together a lot of the things you have been doing in this chapter
into one rather large-ish project. The project name is daylight_summary, and it
gives a table of average minutes of daylight per month for a given latitude or
city (selected from a drop-down menu). Here is the HTML:

<!DOCTYPE html>
<html>
 <head>
 <title>Amount of Daylight</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <style type="text/css">
 th, td {
 border: 1px solid gray;
 padding: 0.5em;
 }
 </style>
 </head>
 <body>
 <h1>Amount of Daylight</h1>
 <p>
 <input type="radio" name="locationType" id="menu" checked="checked">
 <select id="cityMenu">
 <option value="39.9075">Beijing</option>
 <option value="52.52437">Berlin</option>
 <option value="-15.77972">Brasília</option>
 <option value="30.06263">Cairo</option>
 <option value="-35.28346">Canberra</option>
 <option value="-17.82772">Harare</option>
 <option value="-12.04318">Lima</option>

Étude 3-7: Monthly Daylight

33

 <option value="51.50853">London</option>
 <option value="55.75222">Moscow</option>
 <option value="-1.28333">Nairobi</option>
 <option value="28.63576">New Delhi</option>
 <option value="12.36566">Ouagadougou</option>
 <option value="59.91273">Oslo</option>
 <option value="48.85341">Paris</option>
 <option value="35.6895">Tokyo</option>
 <option value="38.89511">Washington, D. C.</option>
 </select>
 <input type="radio" id="userSpecified" name="locationType">
 Other latitude: <input type="text" size="8" id="latitude"/>
 <input type="button" value="Calculate" id="calculate"/>
 </p>

 <h2>Monthly Average Daylight</h2>
 <table>
 <thead><tr><th>Month</th><th>Average</th></tr></thead>
 <tbody>
 <tr><td>January</td><td id="m1"></td></tr>
 <tr><td>February</td><td id="m2"></td></tr>
 <tr><td>March</td><td id="m3"></td></tr>
 <tr><td>April</td><td id="m4"></td></tr>
 <tr><td>May</td><td id="m5"></td></tr>
 <tr><td>June</td><td id="m6"></td></tr>
 <tr><td>July</td><td id="m7"></td></tr>
 <tr><td>August</td><td id="m8"></td></tr>
 <tr><td>September</td><td id="m9"></td></tr>
 <tr><td>October</td><td id="m10"></td></tr>
 <tr><td>November</td><td id="m11"></td></tr>
 <tr><td>December</td><td id="m12"></td></tr>

 </tbody>
 </table>
 <script src="out/daylight_summary.js" type="text/javascript"></script>
 </body>
</html>

In this program, don’t worry about leap years; do the calculation based on a
365-day year. To determine which of the radio buttons is selected, you use code
like this in Enfocus, where ef is the abbreviation for the enfocus.core name-
space:

(ef/from "input[name='locationType']" (ef/get-prop :checked)))

The selector is a CSS style selector, and the expression returns a list of the
status of the two radio buttons, with true if selected and false if not.

If you are using Domina, use code like this, again using a CSS selector:

CHAPTER 3: Lists, Vectors, and Higher-Order Functions

34

(def radio (domina/nodes (domina.css/sel "input[name='locationType']")))
(domina/value (first radio))

The result of the second expression is the string "on" if the radio button is
selected, nil if not.

See a suggested solution: “Solution 3-7”

Étude 3-7: Monthly Daylight

35

Maps

In this chapter, you will work with maps (not to be confused with the map func-
tion, though you can use map on a map). Also, the études are designed to run on
the server side with Node.js®, so you may want to see how to set that up in
Appendix D.

Étude 4-1: Condiments

If you spend some time going through open datasets such as those form da-
ta.gov, you will find some fairly, shall we say, esoteric data. Among them is My-
Pyramid Food Raw Data from the Food and Nutrition Service of the United
States Department of Agriculture.

One of the files is Foods_Needing_Condiments_Table.xml, which gives a list
of foods and condiments that go with them. Here is what part of the file looks
like, indented and edited to eliminate unnecessary elements, and placed in a
file named test.xml.

<Foods_Needing_Condiments_Table>
 <Foods_Needing_Condiments_Row>
 <Survey_Food_Code>51208000</Survey_Food_Code>
 <display_name>100% Whole Wheat Bagel</display_name>
 <cond_1_name>Butter</cond_1_name>
 <cond_2_name>Tub margarine</cond_2_name>
 <cond_3_name>Reduced calorie spread (margarine type)</cond_3_name>
 <cond_4_name>Cream cheese (regular)</cond_4_name>
 <cond_5_name>Low fat cream cheese</cond_5_name>
 </Foods_Needing_Condiments_Row>
 <Foods_Needing_Condiments_Row>
 <Survey_Food_Code>58100100</Survey_Food_Code>
 <display_name>"Beef burrito (no beans):"</display_name>
 <cond_1_name>Sour cream</cond_1_name>
 <cond_2_name>Guacamole</cond_2_name>
 <cond_3_name>Salsa</cond_3_name>
 </Foods_Needing_Condiments_Row>

37

4

https://nodejs.org/
http://www.data.gov/
http://www.data.gov/
http://catalog.data.gov/dataset/mypyramid-food-raw-data-f9ed6
http://catalog.data.gov/dataset/mypyramid-food-raw-data-f9ed6

 <Foods_Needing_Condiments_Row>
 <Survey_Food_Code>58104740</Survey_Food_Code>
 <display_name>Chicken & cheese quesadilla:</display_name>
 <cond_1_name>Sour cream</cond_1_name>
 <cond_2_name>Guacamole</cond_2_name>
 <cond_3_name>Salsa</cond_3_name>
 </Foods_Needing_Condiments_Row>
</Foods_Needing_Condiments_Table>

Your task, in this étude, is to take this XML file and build a ClojureScript map
whose keys are the condiments and whose values are vectors of foods that go
with those condiments. Thus, for the sample file, running the program from the
command line the output would be this map (formatted and quotemarked for
ease of reading):

[etudes@localhost nodetest]$ node condiments.js test.xml
{"Butter" ["100% Whole Wheat Bagel"],
"Tub margarine" ["100% Whole Wheat Bagel"],
"Reduced calorie spread (margarine type)" ["100% Whole Wheat Bagel"],
"Cream cheese (regular)" ["100% Whole Wheat Bagel"],
"Low fat cream cheese" ["100% Whole Wheat Bagel"],
"Sour cream" ["Beef burrito (no beans):" "Chicken & cheese quesadilla:"],
"Guacamole" ["Beef burrito (no beans):" "Chicken & cheese quesadilla:"],
"Salsa" ["Beef burrito (no beans):" "Chicken & cheese quesadilla:"]}

Parsing XML

How do you parse XML using Node.js? Install the node-xml-lite module:

[etudes@localhost ~]$ npm install node-xml-lite
npm http GET https://registry.npmjs.org/node-xml-lite
npm http 304 https://registry.npmjs.org/node-xml-lite
npm http GET https://registry.npmjs.org/iconv-lite
npm http 304 https://registry.npmjs.org/iconv-lite
node-xml-lite@0.0.3 node_modules/node-xml-lite
└── iconv-lite@0.4.8

Bring the XML parsing module into your core.cljs file:

(def xml (js/require "node-xml-lite"))

The following code will parse an XML file and return a JavaScript object:

(.parseFileSync xml "test.xml")

And here is the JavaScript object that it produces:

CHAPTER 4: Maps

38

 {:name "Foods_Needing_Condiments_Table", :childs [
 {:name "Foods_Needing_Condiments_Row", :childs [
 {:name "Survey_Food_Code", :childs ["51208000"]}
 {:name "display_name", :childs ["100% Whole Wheat Bagel"]}
 {:name "cond_1_name", :childs ["Butter"]}
 {:name "cond_2_name", :childs ["Tub margarine"]}
 {:name "cond_3_name", :childs ["Reduced calorie spread (margarine type)"]}
 {:name "cond_4_name", :childs ["Cream cheese (regular)"]}
 {:name "cond_5_name", :childs ["Low fat cream cheese"]}
]}
 {:name "Foods_Needing_Condiments_Row", :childs [
 {:name "Survey_Food_Code", :childs ["58100100"]}
 {:name "display_name", :childs ["Beef burrito (no beans):"]}
 {:name "cond_1_name", :childs ["Sour cream"]}
 {:name "cond_2_name", :childs ["Guacamole"]}
 {:name "cond_3_name", :childs ["Salsa"]}
]}
 {:name "Foods_Needing_Condiments_Row", :childs [
 {:name "Survey_Food_Code", :childs ["58104740"]}
 {:name "display_name", :childs ["Chicken & cheese quesadilla:"]}
 {:name "cond_1_name", :childs ["Sour cream"]}
 {:name "cond_2_name", :childs ["Guacamole"]}
 {:name "cond_3_name", :childs ["Salsa"]}
]}
]}

Command Line Arguments

While you can hard-code the XML file name into your program, it makes the pro-
gram less flexible. It would be much nicer if (as in the description of the étude)
you could specify the file name to process on the command line.

To get command line arguments, use the arg property of the global js/
process variable. Element 0 is "node", element 1 is the name of the JavaScript
file, and element 2 is where your command line arguments begin. Thus, you can
get the file name with:

(nth (.-argv js/process) 2)

Mutually Recursive Functions

While writing my solution, I had two separate functions: process-children,
which iterated through all the childs. calling function process-child for
each of them. However, a child element could itself have children, so process-
child had to be able to call process-children. The term for this sort of situ-
tation is that you have mutually recursive functions. Here’s the problem: Clojure-

Étude 4-1: Condiments

39

Script requires you to define a function before you can use it, so you would
think that you can’t have mutually recursive functions. Luckily, the inventor of
Clojure foresaw this sort of situation and created the declare form that lets
you declare a symbol that you will define later. Thus, I was able to write code
like this:

(declare process-child)

(defn process-children [...]
 (process-child ...))

(defn process-child [...]
 (process-children ...))

Just because I used mutually recursive functions to solve the problem
doesn’t mean you have to. If you can find a way to do it with a single recursive
function, go for it. I was following the philosophy of “the first way you think of
doing it that works is the right way.”

There’s a lot of explanation in this étude, and you are probably thinking this
is going to be a huge program. It sure seemed that way to me while I was writ-
ing it, but it turned that was mostly because I was doing lots of tests in the REPL
and looking things up in documentation. When I looked at the resulting pro-
gram, it was only 45 lines. Here it is: “Solution 4-1”.

Étude 4-2: Condiment Server

Now that you have the map from the previous étude, what can you do with it?
Well, how many times have you been staring at that jar of mustard and asking
yourself “What food would go well with this?” This étude will cure that indeci-
sion once and for all. You will write a server using Express, which, as the web
site says, is a “minimalist web framework for Node.js.” This article about using
ClojureScript and Express was very helpful when I was first learning about the
subject; I strongly suggest you read it.

Let’s set up a simple server that you can use as a basis for this étude. The
server presents a form with an input field for the user’s name. When the user
clicks the submit button, the data is submitted back to the server and it echoes
back the form and a message: “Pleased to meet you, username.”

Setting up Express

You will need to do the following:

CHAPTER 4: Maps

40

http://expressjs.com/
http://www.mase.io/code/clojure/node/2015/01/25/clojurescript-and-node-part-2-express/
http://www.mase.io/code/clojure/node/2015/01/25/clojurescript-and-node-part-2-express/

• Add [express "4.11.1"] to the :node-dependencies in your
project.clj file.

• Add [cljs.nodejs :as nodejs] to the (:require...) clause of the
namespace declaration at the beginning of core.cljs.

• Add (def express (nodejs/require "express")) in your core.cljs
file

• Make your main function look like this:

(defn -main []
 (let [app (express)]
 (.get app "/" generate-page!)
 (.listen app 3000
 (fn []
 (println "Server started on port 3000")))))

This starts a server on port 3000, and when it receives a get request, calls
the generate-page! function. (You can also set up the server to accept
post requests and route them to other URLS than the server root, but
that is beyond the scope of this book.)

Generating HTML from ClojureScript

To generate the HTML dynamically, you will use the html function of the hic-
cups library. The function takes as its argument a vector that has a keyword as
an element name, an optional map of attributes and values, and the element
content. Here are some examples:

HTML Hiccup

<h1>Heading</h1> (html [:h1 “Heading"])

<p id="intro">test</p> (html [:p {:id “intro"} test])

<p>Click to go to
page two.</p>

(html [:p “Click to " [:a {:href
“page2.html"} “go to page two"] “."])

You add [hiccups "0.3.0"] to your project.clj dependencies and modify
your core.cljs file to require hiccups:

(ns servertest.core
 (:require-macros [hiccups.core :as hiccups])
 (:require [cljs.nodejs :as nodejs]
 [hiccups.runtime :as hiccupsrt]))

Étude 4-2: Condiment Server

41

https://github.com/teropa/hiccups
https://github.com/teropa/hiccups

You are now ready to write the generate-page! function, which has two
parameters: the HTTP request that the server received, and the HTTP response
that you will send back to the client. The property (.-query request) is a
JavaScript object with the form names as its properties. Thus, if you have a
form entry like this:

<input type="text" name="userName"/>

You would access the value via (.-userName (.-query request)).
The generate-page function creates the HTML page as a string to send

back to the client; you send it back by calling (.send response html-

string). The HTML page will contain a form whose action URL is the server
root (/). The form will have an input area for the user name and a submit but-
ton. This will be followed by a paragraph that has the text “Pleased to meet
you, user name.” (or an empty paragraph if there’s no user name). You can ei-
ther figure out this code on your own or see a suggested solution. I’m giving
you the code here because the purpose of this étude is to process the condi-
ment map in the web page context rather than setting up the web page in the
first place. (Of course, I strongly encourage you to figure it out on your own; you
will learn a lot—I certainly did!)

Putting the Étude Together

Your program will use the previous étude’s code to build the map of condiments
and compatible foods from the XML file. Then use the same framework that was
developed in “Generating HTML from ClojureScript”, with the generated
page containing:

• A form with a <select> menu that gives the condiment names (the keys
of the map). You may want to add an entry with the text “Choose a condi-
ment” at the beginning of the menu to indicate “no choice yet.” When you
create the menu, remember to select the selected="selected" at-
tribute for the current menu choice.

• A submit button for the form
• An unordered list that gives the matching foods for that condiment (the

value from the map), or an empty list if no condiment has been chosen.

Your code should alphabetize the condiment names and compatible foods.
Some of the foods begin with capital letters; others with lower case. You will
want to do a case-insensitive form. (Hint: use the form of sort that takes a
comparison function.)

CHAPTER 4: Maps

42

See a suggested solution: “Solution 4-2B”. To make the program easier to
read, I put the code for creating the map into a separate file with its own name-
space.

Étude 4-3: Maps—Frequency Table

This étude uses an excerpt of the Montgomery County, Maryland (USA) traffic
violation database, which you may find at this URL. I have taken only the viola-
tions for July 2014, removed several of the columns of the data, and put the re-
sult into a TAB-separated value file named traffic_july_2014_edited.csv, which
you may find in the GitHub repository. (Yes, I know CSV should be comma-
separated, but using TAB makes life much easier.)

Here are the column headings:

• Date Of Stop, in format mm/dd/yyyy
• Time Of Stop, in format hh:mm:ss
• Description
• Accident (Yes/No)
• Personal Injury (Yes/No)
• Property Damage (Yes/No)
• Fatal (Yes/No)
• State (two-letter abbreviation)
• Vehicle Type
• Year
• Make
• Model
• Color
• Violation Type (Warning / Citation / ESERO [Electronic Safety Equipment

Repair Order])
• Charge (Maryland Government traffic code section)
• Race
• Gender
• Driver State (two-letter abbreviation)
• Driver’s License State (two-letter abbreviation)

As you can see, you have a treasure trove of data here. For example, one rea-
son I chose July is that I was interested in seeing if the number of traffic viola-
tions was greater around the July 4th holiday (in the United States) than during
the rest of the month.

If you look at the data, you will notice the “Make” (vehicle manufacturer) col-
umn would need some cleaning up to be truly useful. For example, there are

Étude 4-3: Maps—Frequency Table

43

http://catalog.data.gov/dataset/traffic-violations-56dda
https://github.com/jdeisenberg/etudes-for-clojurescript

entries such as TOYOTA, TOYT, TOYO, and TOUOTA. Various other creative spell-
ings and abbreviations abound in that column. Also, the Scion is listed as both
a make and a model. Go figure.

In this étude, you are going to write a Node.js project named frequency It will
contain a function that reads the CSV file and creates a data structure (I suggest
a vector of maps) for each row. For example:

[{:date "07/31/2014", :time "22:08:00" ... :gender "F", :driver-state "MD"},
 {:date "07/31/2014", :time "21:27:00" ... :gender "F", :driver-state "MD"}, ...]

Hints:

• For the map, define a vector of heading keywords, such as:

(def headings [:date :time ... :gender :driver-state])

If there are columns you don’t want or need in the map, enter nil in the
vector.

• Use zipmap to make it easy to construct a map for each row. You will
have to get rid of the nil entry; dissoc is your friend here.

You will then write a function named frequency-table with two parame-
ters:

1. The data structure from the CSV file
2. A column specifier

You can take advantage of ClojureScript’s higher order functions here. The
specifier is a function that takes one entry (a “row”) in the data structure and
returns a value. So, if you wanted a frequency table to figure out how many vio-
lations there are in each hour of the day, you would write code like this:

(defn hour [csv-row]
 (.substr (csv-row :time) 0 2))

(defn frequency-table [all-data col-spec]
 ;; your code here
)

;; now you do a call like this:
(frequency-table traffic-data hour)

Note that, because keyword access to maps works like a function, you could
get the frequency of genders by doing this call:

(frequency-table traffic-data :gender true)

CHAPTER 4: Maps

44

The return value from frequency-table will be a vector that consists of:

• A vector of labels (the values from the specified column), sorted
• A vector giving the frequency counts for each label
• The total count

The return value from the call for gender looks like this: [["F" "M" "U"]
[6732 12776 7] 19515]. Hint: Build a map whose keys are labels and whose
values are their frequency, then use seq.

Here are some frequency tables that might be interesting: Color of car—
which car colors are most likely to have a violation? Year of car manufacture—
are older cars more likely to have a violation? (To be sure, there are other fac-
tors at work here. Car colors are not equally common, and there are fewer cars
on the road that were manufactured in 1987 than were made last year. This
étude is meant to teach you to use maps, not to make rigorous, research-ready
hypotheses.)

Reading the CSV File

Reading a file one line at a time from Node.js is a non-trivial matter. Luckily for
you and me, Jonathan Boston (twitter/github: bostonou), author of the Clo-
jureScript Made Easy blog posted a wonderful solution just days before I
wrote this étude. He has kindly given me permission to use the code, which you
can get at this GitHub gist. Follow the instructions in the gist, and separate the
Clojure and ClojureScript code. Your src directory will look like this:

src
├── cljs_made_easy
│ ├── line_seq.clj
│ └── line_seq.cljs
└── traffic
 └── core.cljs

Inside the core.cljs file, you will have these requirements:

(ns traffic.core
 (:require [cljs.nodejs :as nodejs]
 [clojure.string :as str]
 [cljs-made-easy.line-seq :as cme]))

(def filesystem (js/require "fs")) ;;require nodejs lib

You can then read a file like this, using with-open and line-seq very much
as they are used in Clojure. In the following code, the call to .openSync has

Étude 4-3: Maps—Frequency Table

45

https://github.com/bostonou
http://clojurescriptmadeeasy.com/blog/cljs-read-files-line-by-line-on-nodejs-part-2.html
https://gist.github.com/bostonou/a54c029fa6f29459eafe
http://clojuredocs.org/clojure.core/with-open
http://clojuredocs.org/clojure.core/line-seq

three arguments: the filesystem defined earlier, the file name, and the file
mode, with "r" for reading.

(defn example [filename]
 (cme/with-open [file-descriptor (.openSync filesystem filename "r")]
 (println (cme/line-seq file-descriptor))))

Note: You may want to use a smaller version of the file for testing. The code
repository contains a file named small_sample.csv with 14 entries.

See a suggested solution: “Solution 4-3”.

Étude 4-4: Complex Maps—Cross-tabulation

Add to the previous étude by writing a function named cross-tab; it creates
frequency cross-tabluations. It has these parameters:

1. The data structure from the CSV file
2. A row specifier
3. A column specifier

Again, the row and column specifiers are functions. So, if you wanted a
cross-tabulation with hour of day as the rows and gender as the columns, you
might write code like this:

(defn hour [csv-row]
 (.substr (csv-row :time) 0 2))

(defn cross-tab [all-data row-spec col-spec]
 ;; your code here
)

;; now you do a call like this:
(crosstab traffic-data hour :gender)

The return value from cross-tab will be a vector that consists of:

• A vector of row labels, sorted
• A vector of column labels, sorted
• A vector of vectors that gives the frequency counts for each row and col-

umn
• A vector of row totals
• A vector of column totals

The previous search on the full data set returns this result, reformatted to
avoid excessively long lines:

CHAPTER 4: Maps

46

(cross-tab traffic-data hour :gender)
[["00" "01" "02" "03" "04" "05" "06" "07" "08" "09" "10" "11" "12"
"13" "14" "15" "16" "17" "18" "19" "20" "21" "22" "23"] ["F" "M" "U"]
[[335 719 0] [165 590 0] [141 380 0] [96 249 0] [73 201 0] [63 119 0]
[129 214 2] [380 625 0] [564 743 1] [481 704 0] [439 713 1] [331 527 0]
[243 456 0] [280 525 0] [344 515 0] [276 407 0] [307 514 1] [317 553 0]
[237 434 1] [181 461 0] [204 553 1] [289 657 0] [424 961 0] [433 956 0]]
[1054 755 521 345 274 182 345 1005 1308 1185 1153 858 699 805 859 683
822 870 672 642 758 946 1385 1389] [6732 12776 7] 19515]

Here are some of the cross-tabulations that might be interesting:

• Day by hour. The marginal totals will tell you which days and hours have
the most violations. Are the days around 4 July 2014 (a US holiday) more
active than other days? Which hours are the most and least active?

• Gender by Color of vehicle (although the driver might not be the person
who purchased the car)

• Driver’s state by Property Damage—are out-of-state drivers more likely to
damage property than an in-state driver?

Bonus points: write the code such that if you give cross-tab a nil for the
column specifier, it will still work, returning only the totals for the row specifier.
Then, re-implement frequency-table by calling cross-tab with nil for the
column specifier. Hint: You will have to take the vector of vectors for the “cross-
tabulation” totals and make it a simple vector. Either map or flatten will be
useful here.

See a suggested solution: “Solution 4-4”.

Étude 4-5: Cross-Tabulation Server

Well, as you can see, the output from the previous étude is ugly to the point of
being nearly unreadable. This rather open-ended étude aims to fix that. Your
mission, should you decide to accept it, is to set up the code in an Express serv-
er to deliver the results in a nice, readable HTML table. Here are some of the
things I found out while coming up with a solution, a screenshot of which ap-
pears in Figure 4-1.

Étude 4-5: Cross-Tabulation Server

47

FIGURE 4-1

Screenshot of Traffic
Cross-Tabulation
Table

• I wanted to use as much of the code from “Étude 4-2: Condiment Serv-
er” as possible, so I decided on drop-down menus to choose the fields.
However, a map was not a good choice for generating the menu. In the
condiment server, it made sense to alphabetize the keys of the food map.
In this étude, the field names are listed by conceptual groups; it doesn’t
make sense to alphabetize them, and the keys of a map are inherently
unordered. Thus, I ended up making a vector of vectors.

• I used map-indexed to create the option menu such that each option
had a numeric value. However, when the server reads the value from the
request, it gets a string, and 5 is not equal to "5". The fix was easy, but I
lost a few minutes figuring out why my selected item wasn’t coming up
when I came back from a request.

• The source file felt like it was getting too big, so I put the cross tabulation
code into a separate file named crosstab.cljs in the src/traffic directory.

• I wanted to include a CSS file, so I put the specification in the header of
the hiccups code. However, to make it work, I had to tell Express how to
serve static files, using "." for the root directory in:

(.use app (.static express "path/to/root/directory"))

• Having the REPL is really great for testing.

CHAPTER 4: Maps

48

http://clojuredocs.org/clojure.core/map-indexed

• I finished the program late at night. Again, “the first way you think of do-
ing it that works is the right way,” but I am unhappy with the solution. I
would really like to unify the cases of one-dimensional and two-
dimensional tables, and there seems to be a dreadful amount of unneces-
sary duplication. To paraphrase Don Marquis, my solution “isn’t moral,
but it might be expedient.”

See a suggested solution (which I put in a project named traffic): “Solution
4-5”.

Étude 4-5: Cross-Tabulation Server

49

Programming with React

Facebook®’s React JavaScript library is designed to make user interfaces eas-
ier to build and manage. React builds a virtual DOM to keep track of and render
only the elements change during user interaction. (As noted in Chapter 2, this

is what all the Cool Kids™ are using.)
In this chapter, you will write études that use different ClojureScript libraries

that interface with React. This blog post gives you a comparison of the libra-
ries. The two we will use are Quiescent and Reagent

These études will implement the same web page: a page that displays an im-
age and lets you adjust its width, height, and (via CSS) its border width and
style. In both libraries, you will build components, which are functions that, as
the Quiescent documentation puts it, tell “how a particular piece of data should
be rendered to the DOM.” Since they are functions, they can use all of Clojure-
Script’s computational power.

51

5

http://facebook.github.io/react/
http://blog.peeja.com/blog/2014/10/01/react-four-ways-how-to-use-react-in-clojurescript/
https://github.com/levand/quiescent
http://reagent-project.github.io/

FIGURE 5-1

Screenshot of Image
Resize Web Page

The HTML for the page will include a <div id="interface">, which is
where the components will go.

Both versions of this étude will declare an atom (with a slight variation for
Reagant) to hold the state of the the application in a map. Let’s do a quick re-
view of atoms by defining an atom with a single value:

(def quantity (atom 32))
cljs.user=> #<Atom:32>

To access the data in an atom, you must dereference it with the `@` opera-
tor:

cljs.user=>@quantity
32

To update an atom’s data, use the swap! function (for individual map val-
ues) and reset! (for the entire value of the atom). The swap! function takes as
its arguments:

• the atom to be modified
• A function to apply to the atom
• The arguments to that function (if any)

Thus, in the REPL:

CHAPTER 5: Programming with React

52

http://clojuredocs.org/clojure.core/swap!

cljs.user=> (swap! quantity inc)
33
cljs.user=> (swap! quantity * 2)
66
cljs.user=> (reset! quantity 47)
47
cljs.user=> quantity
#<Atom: 47>
cljs.user=> @quantity
47

However, in most ClojureScript programs, you do not create an atom for
each part of the state you need to save. Instead, you will most often use a map.

cljs.user=> (def inventory (atom {:quantity 32 :price 3.75}))
#<Atom: {:quantity 32, :price 3.75}>
cljs.user=> (swap! inventory assoc :price 4.22)
{:quantity 32, :price 4.22}
cljs.user=> (swap! inventory update :quantity inc)
{:quantity 33, :price 4.22}
cljs.user=> @inventory
{:quantity 33, :price 4.22}

Back to the program for this étude. The page has to keep track of:

• The image’s current width and height
• Whether you want the width and height to stay in proportion or not
• The border width and style (intially three pixels solid)—the color will be

set to red for visibility
• The image’s original width and height (needed to do proportional scaling

properly)
• The image file name

That gives us this atom.

(defonce status
 (atom {:w 0 :h 0 :proportional true
 :border-width 3 :border-style "solid"
 :orig-w 0 :orig-h 0 :src "clock.jpg"}))

Étude 5-1: Reactive Programming with Quiescent

To use Quiescent, add [quiescent "0.2.0-alpha1"] to your project’s de-
pendencies and add requirements to your namespace:

Étude 5-1: Reactive Programming with Quiescent

53

(:require [quiescent.core :as q]
 [quiescent.dom :as d])

As an example, let’s define a simple component that displays an input area
and some text that goes with the w field in the atom that was defined previous-
ly.

(q/defcomponent Example
 :name "Example"
 [status]
 (d/div {}
 "Your input here: "
 (d/input {:type "text"
 :value (:w status)
 :size "5"})
 (d/br)
 "Your input, squared: "
 (d/span {} (* (:w status) (:w status)))))

The general format for creating an HTML element inside a component is to
give its element name, a map of its attributes (or the empty map {} if there are
no attributes, as on the div), and the element content, which may contain oth-
er elements. The :name before the parameter list gives the component a name
for React to use. The key/value pairs before the parameter list make up the
component configuration; this is described in detail in the Quiescent Docu-
mentation. The value of the input field and span are provided by the current
value of the :w key in the status atom.

The only thing remaining to do is to render the component. In Quiescent, the
q/render function renders a component once. If you want continuous render-
ing, you can use JavaScript’s requestAnimationFrame to repeat the process.
Remember, when using React, only the components that have changed get re-
rendered, so you don’t need to worry about that using requestAnimation-
Frame will eat your CPU alive.

(defn render
 "Render the current state atom, and schedule a render on the next frame"
 []
 (q/render (Example @status) (aget (.getElementsByTagName js/document "body") 0))
 (.requestAnimationFrame js/window render))

 (render)

Quiescent’s render function takes two arguments: A call to the component
with its argument—in this case, the de-referenced atom, and the DOM node

CHAPTER 5: Programming with React

54

https://github.com/levand/quiescent/blob/release/docs.md
https://github.com/levand/quiescent/blob/release/docs.md

where you want the component rooted. For this example, that’s the first (and,
we hope, only) <body> element.

If you compile this code and then load the index.html file, you will see a zero
in the input and output area - but you will also find that you cannot type into
the field. That is because Quiescent and React always keep the DOM value and
the atom value synchronized, and since the value in the atom never changes,
neither can the field. To fix that, add this code to the input element (it is in
bold):

(d/input {:type "text"
 :value (:w status)
 :onChange update-value
 :size "5"})

And then write the update-value function, which takes the value from the
event target and puts it into the atom that keeps the page’s state.

(defn update-value [evt]
 (swap! status assoc :w (.-value (.-target evt))))

Voilà—your page now updates properly.

Hints

1. You will have to initialize the values for the image’s original width and
height. To do this, you add an :onLoad clause to the properties of the im-
age component. Its value is a function that handles the event by setting
the width, height, original width, and original height. Use the natural-
Width and naturalHeight properties of the image. Those properties do
not work with Internet Explorer 8, but will work in Intenet Explorer 9+.

2. Handling the checkbox also requires some extra care. The value of the
checked attribute isn’t the checkbox’s value, so you will have to use :on-
mount to initialize the checkbox, and you will have to directly change the
checkbox status with code like this:

(set! (.-checked (.getElementById js/document "prop"))

Here is an example of :on-mount to initialize the example’s input field to
the current minute of the hour. :on-mount is followed by the definition of
a function that has the current node as its argument.

(q/defcomponent Example
 :name "Example"

Étude 5-1: Reactive Programming with Quiescent

55

 :on-mount (fn [node]
 (swap! status assoc :w (.getMinutes (js/Date.))))
 [status]
 ;; etc.

3. If you want to use a list to initialize the drop-down menu, you will need to
define a component for menu options and then use apply and map clev-
erly. This took me a long time to get right, so I’m giving you the code for
free with an abbreviated example.

(q/defcomponent Option
 [item]
 (d/option {:value item} item))

;; then, in the component that builds the form:
(apply d/select {:id "menu" :onChange change-border}
 (map Option ["none" "solid" "dotted" "etc."]))

See a suggested solution: “Solution 5-1”.

Étude 5-2: Reactive Programming with Reagent

To use Reagent, add [reagent "0.5.0"] to your project’s dependencies and
add this requirement to your namespace:

(:require [reagent.core :as reagent :refer [atom])

Note the :refer [atom] clause; Reagent has its own definition of atom
that plays nicely with React; it is defined so that you can use it exactly the way
you would use a normal ClojureScript atom.

As an example, let’s define a simple component that displays an input area
and some text that goes with the w field in the atom that was defined previous-
ly.

(defn example []
 [:div
 "Your input here:"
 [:input {:type "text"
 :value (:w @status)
 :size "5"}]
 [:br]
 "Your input, squared: "
 [:span (* (:w @status) (:w @status))]])

CHAPTER 5: Programming with React

56

The general format for creating an HTML element inside a component is to
create a vector whose first element is a keyword giving the HTML element
name, a map of its attributes (if any), and the element content, which may con-
tain other elements. The value of the input field and span are provided by the
current value of the :w key in the status atom. Unlike Quiescent, you must
dereference the atom.

The only thing remaining to do is to render the component. You don’t have
to request animation frames; Reagent handles that for you.

(defn run []
 (reagent/render [example]
 (aget (.getElementsByTagName js/document "body") 0)))

(run)

Reagent’s render function takes two arguments: A call to the component
and the DOM node where you want the component rooted. In this case, the first
(and, we hope, only) <body> element.

If you compile this code and then load the index.html file, you will see a zero
in the input and output area - but you will also find that you cannot type into
the field. That is because Reagent and React always keep the DOM value and
the atom value synchronized, and since the value in the atom never changes,
neither can the field. To fix that, add this code to the input element (it is in
bold):

(d/input {:type "text"
 :value (:w status)
 :on-change update-value
 :size "5"})

And then write the update-value function, which takes the value from the
event target and puts it into the atom that keeps the page’s state.

(defn update-value [evt]
 (swap! status assoc :w (.-value (.-target evt))))

Voilà—your page now updates properly.

Hints

1. You will have to initialize the values for the image’s original width and
height. To do this, you add an :on-load clause to the properties of the
image component. Its value is a function that handles the event by set-

Étude 5-2: Reactive Programming with Reagent

57

ting the width, height, original width, and original height. Use the natu-
ralWidth and naturalHeight properties of the image. Those proper-
ties do not work with Internet Explorer 8, but will work in Intenet Explorer
9+.

2. Handling the checkbox also requires some extra care. The value of the
checked attribute isn’t the checkbox’s value, so you will have to directly
change the checkbox status with code like this:

(set! (.-checked (.getElementById js/document "prop"))

Initializing the checkbox takes a bit more work in Reagent. You must de-
fine a symbol that adds meta-information to the example component.
This information includes a function that does the initialization. Here is
an example that initializes the example’s input field to the current minute
of the hour. You then render the new component:

(def init-example
 (with-meta example
 {:component-will-mount
 (fn [this]
 (swap! status assoc :w (.getMinutes (js/Date.))))}))

3. If you want to use a list to initialize the drop-down menu, you will need to
define a component for menu options and then use for. This took me a
long time to get right, so I’m giving you the code for free with an abbrevi-
ated example. React is not happy if each option does not have a unique
key, so this code adds it.

(defn option [item]
 [:option {:value item :key item} item])

;; then, in the component that builds the form:
[:select {:id "menu" :on-change change-border}
 (for [item ["none" "solid" "dotted" "etc."]]
 (option item))]])

See a suggested solution: “Solution 5-2”.

CHAPTER 5: Programming with React

58

1 You may have noticed that the last two lines in the example have the same registration ID
and section number. This is not an error. The first of the entries is the lecture part of the
course and the second is the lab part. These are distinguished by an “instructional method”
column which has not been included in the sample data.

Interlude: Room Usage Project

Once again, it’s time to put together what you have learned into a somewhat
open-ended project. Presume you are an administrator at a college and need to
know how well the classroom buildings are utilized. The github repostiory for
this book has a file named roster.csv in the datafiles/chapter06/building_usage
directory. The roster file contains data for a list of class sections at a community
college. This is real data, except the room numbers have been changed to “ano-
nymize” the data. The file consists of a series of lines like this:

24414;201;ACCTG;022;Payroll Accounting;TTH;06:30 PM;08:20 PM;N190
22719;201;ART;012;Two Dimensional Design;MW;01:45 PM;02:35 PM;P204
22719;201;ART;012;Two Dimensional Design;MW;02:45 PM;04:35 PM;P204

The columns are the registration ID number, the section number, depart-
ment, course number, course title, days of the week when the course meets, be-
ginning and ending time, and room number. In the field for the days of the
week, Thursday is represented as TH, Saturday as S, and Sunday as SU (yes,
there are some Sunday classes).1

The ultimate goal of this chapter is to produce a program that will let you
visualize the percentage use of each building at a particular time and day of
week. (If you like, you can expand this étude to visualize usage on a room-by-
room basis, but building usage is more generally useful. This is because not all
rooms are interchangeable. For example, a chemistry lab may appear underu-
tilized, but you can’t put a history class in that room when it’s not in use.)

Étude 6-1: Build the Data Structure

You have a lot of options in this étude. Phrasing them in the form of questions:

59

6

• Should you include the CSV text as a large string?
◦ If so, do you include all the columns or just the ones you need for

this project?
◦ If you don’t want to have a large string, you may end up writing a

node.js program that takes the data file and creates a ClojureScript
source file.

• How will you index the data?
◦ Day of week → time of day → building
◦ Time of day → building → day of week
◦ Building → day of week → time of day
◦ Some other combination

• Should the data for time of day be an array, map, or some other data
structure?

• Should you index days of the week by number or as a map?
• What is the granularity of time of day? Hourly, every 30 minutes, every 15

minutes, or some other unit?

Unless you decide on a single level map or vector, you will want to look at
the get-in and assoc-in functions for accessing and modifying data in a nes-
ted associative structure.

In order to calculate the percentage of utilization, you will also need to know
the number of distinct rooms in each building. Note that the utilization could
be more than 100%. For example, there may be classes that are concurrent in
different disciplines; an “introduction to computer technology” might be listed
under both BIS (Business Information Systems) and CIT (Computer and Infor-
mation Technology). Or, an open writing lab may be shared by several English
classes at the same time.

This is your implementation, so you get to make all these decisions. See
what I came up with: “Solution 6-1”.

Étude 6-2: Visualizing the Data (Version 1)

Now that you have the data in a format that you like, choose a visualization.
The one I decided on originally was to use a map of the campus, which is in a
file named campus_map.svg in the datafiles folder in the github repository. The
file has each building in a <g> element with an appropriate id; for example, the
SVG for building B starts like this:

<g>
 <title id="group_B">0%</title>
 <rect
 transform="matrix(0,1,-1,0,0,0)"

CHAPTER 6: Interlude: Room Usage Project

60

http://clojuredocs.org/clojure.core/get-in
http://clojuredocs.org/clojure.core/assoc-in

FIGURE 6-1

Screenshot of
Building Usage
Animation

 y="-123.85256" x="906.50964" height="74.705124" width="102.70512"
 id="bldg_B"
 style="fill:green;fill-opacity:0;stroke:#000000;stroke-opacity:1" />

The program lets you choose a day and time of day; when either of those
field changes, the program calculates the percentage of usage of each building
and adjusts the fill-opacity and <title> contents. (I used green for the fill
color, because the more the building is in use, the better it is.) Figure 6-1 shows
what the resulting page looks like. The “play” button will start advancing time
15 minutes every 1.5 seconds and updating the map automatically.

See a suggested solution: “Solution 6-2”.

Étude 6-3: Visualizing the Data (Version 2)

I learned a lot of interesting things while writing the preceding étude, but, to be
honest, it didn’t look anywhere near as exciting as I thought it would. A more
traditional visualization—a bar chart—gives a lot more information in a very
readable form, as you can see in Figure 6-2.

Étude 6-3: Visualizing the Data (Version 2)

61

FIGURE 6-2

Screenshot of
Building Usage Bar
Chart

While it would be an interesting exercise to write a bar chart program, it is
easier to use an existing library, so I downloaded ChartJS (version 1.0, not the
alpha version 2.0 as of this writing) and installed the minimized JavaScript in
the public directory. You may use any charting package you wish for your solu-
tion. If you feel tremendously ambitious, you may write your own.

See a suggested solution: “Solution 6-3”.

CHAPTER 6: Interlude: Room Usage Project

62

http://www.chartjs.org/

Records and Protocols

In this chapter, you will write études that use defprotocol and defrecord to
implement addition, subtraction, multiplication, and division of rational and
complex numbers.

As an example, we will build a record that keeps track of a duration in terms
of minutes and seconds, and implement a protocol that can add two durations
and can convert a duration to a string. It is in a project named proto.

(defrecord Duration [min sec])

Once you have this record defined, you can use it as follows:

proto.core=>
proto.core=> (def d (Duration. 2 29)) ;; Create a new duration of 2 minutes and 29 seconds
#proto.core.Duration{:min 2, :sec 29}
proto.core=> (:min d) ;; extract values
2
proto.core=> (:sec d)
29

Since a duration is a special kind of number, we will implement a protocol
for handling special numbers. It has two methods: plus (to add two special
numbers) and canonical (to convert the special number to “canonical form.”
For example, the canonical form of 2 minutes and 73 seconds is 3 minutes and
13 seconds.

(defprotocol SpecialNumber
 (plus [this other])
 (canonical [this]))

The plus method takes two parameters: this record and an other dura-
tion. When you define protocols, the first parameter of every method is the ob-
ject you are interested in manipulating.

63

7

http://clojuredocs.org/clojure.core/defprotocol
http://clojuredocs.org/clojure.core/defrecord

Now you can implement these methods by adding to defrecord. Here is the
code for canonical

(defrecord Duration [min sec]
 SpecialNumber

 (plus [this other]
 "Just add minutes and seconds part,
 and let canonical do the rest."
 (let [m (+ (:min this) (:min other))
 s (+ (:sec this) (:sec other))]
 (canonical (Duration. m s))))

 (canonical [this]
 (let [s (mod (:sec this) 60)
 m (+ (:min this) (quot (:sec this) 60))]
 (Duration. m s))))

And it works:

proto.core=> (canonical (Duration. 2 29))
#proto.core.Duration{:min 2, :sec 29}
proto.core=> (canonical (Duration. 2 135))
#proto.core.Duration{:min 4, :sec 15}
proto.core=> (plus (Duration. 2 29) (Duration. 3 40))
#proto.core.Duration{:min 6, :sec 9}

That’s all very nice, but what if you want to display the duration in a form
that looks nice, like 2:09? You can do this by implementing the toString
method of the Object protocol. Add this code to the defrecord:

 Object
 (toString [this]
 (let [s (:sec this)]
 (str (:min this) ":" (if (< s 10) "0" "") s)))

And voilà; str will now convert your durations properly:

proto.core=> (str (Duration. 4 45))
"4:45"

Étude 7-1: Rational Numbers

Clojure has rational numbers; if you enter (/ 6 8) in the REPL, you get back
3/4. ClojureScript doesn’t do that, so you will implement rational numbers by

CHAPTER 7: Records and Protocols

64

adding the minus, mul, and div methods to the SpecialNumbers protocol.
You will then define a record named Rational for holding a rational number
using its numerator and denominator. Implement all the methods of the proto-
col for rational numbers (including canonical and toString).

The canonical form of a rational number is the fraction reduced to lowest
terms, with the denominator always positive; thus:

proto.core=> (canonical (Rational. 6 8))
#proto.core.Rational{:num 3, :denom 4}
proto.core=> (canonical (Rational. 6 -9))
#proto.core.Rational{:num -2, :denom 3}

To reduce a fraction, you divide its numerator and denominator by the great-
est common divisor (GCD) of the two numbers. The GCD is defined only for posi-
tive numbers. Here is Dijkstra’s algorithm for GCD of numbers m and n:

• If m equals n, return m.
• If m is greater than n, return the GCD of (m − n) and n.
• Otherwise, return the GCD of m and (n − m).

The cool thing about this algorithm for finding the greatest common divisor
is that it doesn’t do any division at all! Notice that it is recursively defined, so
this is a wonderful place for you to learn to use recur. (Hint: cond is also quite
useful here.)

When converting to canonical form, if you have a zero in the numerator, just
keep the rational number exactly as it is.

See a suggested solution: “Solution 7-1”.

Étude 7-2: Complex Numbers

Extend this project further by adding a record and protocol for complex num-
bers. A complex number has the form a + bi, where a is the real part and b is the
imaginary part. The letter i stands for the square root of negative 1.:

Here are formulas for doing arithmetic on complex numbers.
(a + bi) + (c + di) = (a + c) + (b + d)i
(a + bi) − (c + di) = (a − c) + (b − d)i
(a + bi)(c + di) = (ac − bd) + (bc + ad)i

a + bi
c + di =

ac + bd
c2 + d2

+ bc − ad
c2 + d2

i

The canonical form of a complex number is just itself. Here is what conver-
sion of complex numbers to strings should look like:

Étude 7-2: Complex Numbers

65

proto.core=> (str (Complex. 3 7))
"3+7i"
proto.core=> (str (Complex. 3 -7))
"3-7i"
proto.core=> (str (Complex. 3 0))
"3"
proto.core=> (str (Complex. 0 3))
"3i"
proto.core=> (str (Complex. 0 -3))
"-3i"
proto.core=> (str (Complex. 0 7))
"7i"
proto.core=> (str (Complex. 0 -7))
"-7i"

See a suggested solution: “Solution 7-2”.

Étude 7-3: Writing Tests

Through the book so far, I have been very lax in writing unit tests for my code.
At least for this chapter, that changes.

Many projects put their tests in a separate test folder, so you should create
one now, and, inside of it, make a file named test_cases.cljs. Then give it these
contents (they presume that your project is named proto).

(ns ^:figwheel-always test.test-cases
 (:require-macros [cljs.test :refer [deftest is are]])
 (:require [cljs.test :as t]
 [proto.core :as p]))

Notice that the namespace is test-cases; the file name is translated to
test_cases.

The ^:figwheel-always is metadata that tells Figwheel to reload the code
on every change to the file.

The :require-macros is something new; macros are like functions, except
that they generate ClojureScript code. The three macros that you will use are
deftest, is, and are. First, let’s define a test that will check that the canonical
form of 3 minutes and 84 seconds is 4 minutes and 24 seconds.

(deftest duration1
 (is (= (p/canonical (p/Duration. 3 84)) (p/Duration. 4 24))))

CHAPTER 7: Records and Protocols

66

The deftest macro creates the test, and the is macro makes a testable as-
sertion; the body of is should yield a boolean value. You can run tests from the
REPL.

cljs.user=> (in-ns 'proto.core)
nil
proto.core=> (require '[cljs.test :as t])
nil
proto.core=> (t/run-tests 'test.test-cases)

Testing test.test-cases

Ran 1 tests containing 1 assertions.
0 failures, 0 errors.
nil

If you want to test several additions, you could write several different deft-
ests, but if they all follow the same model, you can use are, which is followed
by a vector of parameter names, an expression to evaluate (which can contain
let), and then a series of sets of arguments to be evaluated. In the following
example, the parameter names vector is on the first line, the second and third
line are the expression to evaluate, and the remaining lines are sets of argu-
ments to assert. (Thus, the first set will plug in 1 for m1, 10 for s1,and "1:10"
for expected and then test the expression with those values.)

(deftest duration-str
 (are [m1 s1 expected]
 (= (str (p/Duration. m1 s1) expected))
 1 10 "1:10"
 1 9 "1:09"
 1 60 "2:00"
 3 145 "5:25"
 0 0 "0:00")

You cannot use destructuring in the arguments to are, but you can
use destructuring in a let within the expression you are testing. Al-
so, when you save the test file, you may have to do the (re-
quire '[cljs.test :as t]) in the REPL again in order to try
your tests again.

In this étude, you will write a series of tests for the rational and complex
numbers. As you will note, some of the tests I used for durations were designed
to try “edge cases” in the hopes of making the algorithms fail. Here are some of
the things you might consider testing:

Étude 7-3: Writing Tests

67

Expression Expected result

gcd(3, 5) 1

gcd(12, 14) 2

gcd(35, 55) 5

1/2 + 1/3 5/6

2/8 + 3/12 1/2

0/4 + 0/5 0/20

1/0 + 1/0 0/0

6/8 - 6/12 1/4

1/4 - 3/4 -1/2

1/3 * 1/4 1/12

3/4 * 4/3 1/1

1/3 ÷ 1/4 4/3

3/4 ÷ 4/3 9/16

(str (Complex. 3 7)) “3+7i”

(str (Complex. 3 -7)) “3-7i”

(str (Complex. -3 7)) “-3+7i”

(str (Complex. -3 -7)) “-3-7i”

(str (Complex. 0 7)) “7i”

(str (Complex. 3 0)) “3”

(1 + 2i) + (3 + 4i) 4 + 6i

(1 - 2i) + (-3 + 4i) -2 + 2i

(1 + 2i) - (3 + 4i) -2 - 2i

(1 + 2i) * (3 + 4i) -5 + 10i

2i * (3 - 4i) 8 + 6i

(3 + 4i) ÷ (1 + 2i) 2.2 - 0.4i

(1 - 2i) ÷ (3 - 4i) 0.44 -0.08i

See a suggested solution: “Solution 7-3”.

CHAPTER 7: Records and Protocols

68

Asynchronous processing

In this chapter, you will write an étude that uses core.async to do asynchronous
processing. Even though the JavaScript environment is single-threaded,
core.async allows you to work with anything that needs to be handled asyn-
chronously; this is a very nice feature indeed.

Here are two examples of using core.async. In the first example, Annie and
Brian are going to send each other the numbers 5 down to zero, stopping at
zero, in a project named async1. You will need to add some :require
and :require-macro specifications to your namespace:

(ns ^:figwheel-always async1.core
 (:require-macros [cljs.core.async.macros :refer [go go-loop]])
 (:require [cljs.core.async
 :refer [<! >! timeout alts! chan close!]]))

Then, define a channel for both Annie and Brian:

(def annie (chan))
(def brian (chan))

Annie gets two processes: one for sending messages to Brian and another for
receiving messages from him.

(defn annie-send []
 (go (loop [n 5]
 (println "Annie sends" n "t` Brian")
 (>! brian n)
 (when (pos? n) (recur (dec n))))))

(defn annie-receive []
 (go-loop []
 (let [reply (<! brian)]
 (println "Annie receives" reply "from Brian")
 (if (pos? reply)

69

8

http://clojuredocs.org/clojure.core.async

 (recur)
 (close! annie)))))

In the annie-send function, you see the go function, which asynchronously
executes its body and immediately returns to the calling function. The >! func-
tion sends data to a channel. The loop continues until n equals zero, at which
point the function returns nil.

Because go and loop occur together so often, ClojureScript has the go-loop
construct, which you see in the annie-receive function. That function loops
(but does not need the loop variable) until it has received the zero, at which
point it performs a close! on the channel.

A similar pair of functions brian-send and brian-receive do Brian’s
sending and receiving tasks (they are not shown here). You may have noticed
there’s a lot of duplication here; we’ll get rid of it in the next example.

All that remains to be done is write a function that invokes these processes:

(defn async-test []
 (do
 (println "Starting...")
 (annie-send)
 (annie-receive)
 (brian-send)
 (brian-receive)))

Here is the console log output from invoking async-test. You can see that
this is indeed asynchronous; the sends and receives are in no particular order.

Starting...
Annie: 5 -> Brian
Annie: 5 <- Brian
Brian: 5 -> Annie
Brian: 5 <- Annie
Annie: 4 -> Brian
Annie: 3 -> Brian
Brian: 4 -> Annie
Brian: 3 -> Annie
Annie: 4 <- Brian
Annie: 3 <- Brian
Brian: 4 <- Annie
Brian: 3 <- Annie
Annie: 2 -> Brian
Annie: 1 -> Brian
Brian: 2 -> Annie
Brian: 1 -> Annie
Annie: 2 <- Brian
Annie: 1 <- Brian

CHAPTER 8: Asynchronous processing

70

Brian: 2 <- Annie
Brian: 1 <- Annie
Annie: 0 -> Brian
Brian: 0 -> Annie
Annie: 0 <- Brian
Brian: 0 <- Annie

You can see the entire program here: “Sample core.async Program 1”.
The next example using core.async, in a project named async2, has process-

es that communicate with one another in a semi-synchronized manner. In this
case, Annie will start off by sending Brian the number 8; he will send her a 7; she
sends back 6, and so on, down to zero.

In this case, both people do the same thing: send the next lower number to
their partner, then await the partner’s reply. Here is the function to activate the
process for the two partners. The from-str and to-str parameters are used
for the debug output.

(defn decrement! [[from-str from-chan] [to-str to-chan] & [start-value]]
 (go-loop [n (or start-value (dec (<! from-chan)))]
 (println from-str ":" n "->" to-str)
 (>! to-chan n)
 (when-let [reply (<! from-chan)]
 (println from-str ":" reply "<-" to-str)
 (if (pos? reply)
 (recur (dec reply))
 (do
 (close! from-chan)
 (close! to-chan)
 (println "Finished"))))))

There are several clever tricks going on in this function. The & [start-
value] allows an optional starting value. There’s an asymmetry in the process-
es; Annie starts the sending, and Brian starts by receiving her data. Thus, Annie
will start with 8 as her start-value; Brian will omit that argument. The com-
pletion of this bit of kabuki is in (or start-value (dec (<! from-

chan))); if start-value is nil (which evaluates to false), you take one less
than the received value as your starting value.

Similarly, the when-let clause is executed only when the reply from from-
chan is true (i.e., not nil).

(defn async-test []
 (let [annie (chan)
 brian (chan)]
 (activate ["Annie" annie] ["Brian" brian] 8)
 (activate ["Brian" brian] ["Annie" annie])))

Asynchronous processing

71

Here is the output from invoking async-test.

Annie : 8 -> Brian
Brian : 7 -> Annie
Annie : 7 <- Brian
Annie : 6 -> Brian
Brian : 6 <- Annie
Brian : 5 -> Annie
Annie : 5 <- Brian
Annie : 4 -> Brian
Brian : 4 <- Annie
Brian : 3 -> Annie
Annie : 3 <- Brian
Annie : 2 -> Brian
Brian : 2 <- Annie
Brian : 1 -> Annie
Annie : 1 <- Brian
Annie : 0 -> Brian
Brian : 0 <- Annie
Finished

You can see the entire program here: “Sample core.async Program 2”.

Étude 8-1: TBD

In this étude, you’re going to write a program that lets the computer play the
card game of “War” against itself.

The Art of War

(Apologies to Sun Tzu.) These are the rules of the game as condensed from Wi-
kipedia, adapted to two players, and simplified further.

Two players each take 26 cards from a shuffled deck. Each person puts their
top card face up on the table. Whoever has the higher value card wins that bat-
tle, takes both cards, and puts them at the bottom of her stack. What happens
the if the cards have the same value? Then the players go to “war.” Each person
puts the next two cards from their stack face down in the pile and a third card
face up. High card wins, and the winner takes all the cards for the bottom of
their stack. If the cards match again, the war continues with another set of
three cards from each person. If a person has fewer than three cards when a
war happens, they put in all their cards.

Repeat this entire procedure until one person has all the cards. That player
wins the game. In this game, aces are considered to have the highest value, and
King > Queen > Jack.

CHAPTER 8: Asynchronous processing

72

http://en.wikipedia.org/wiki/War_%28card_game%29
http://en.wikipedia.org/wiki/War_%28card_game%29

A game can go on for a very long time, so I have added a new rule: if the
game goes more than a pre-determined maximum number of rounds (50 in my
program), stop playing. The person who has fewer cards win. If the number of
cards is equal, it’s a tie.

War: What is it good for?

Absolutely nothing. Well, almost nothing. War is possibly the most incredibly in-
ane card game ever invented. It is a great way for children to spend time, and
it’s perfect as an étude because

• it is naturally implementable as channels (players) passing information
(cards)

• there is no strategy involved in the play, thus allowing you to concentrate
on the channels and messages

Pay Now or Pay Later

When you purchase an item, if you pay cash on the spot, you often end up pay-
ing less than if you used credit. If you are cooking a meal, getting all of the in-
gredients collected before you start (pay now) is often less stressful than having
to stop and go to the grocery store for items you found out you didn’t have (pay
later). In most cases, “pay now” ends up being less expensive than “pay later,”
and that certainly applies to most programming tasks.

So, before you rush off to start writing code, let me give you a word of ad-
vice: Don’t. Spend some time with paper and pencil, away from the computer,
and design this program first. This is a non-trivial program, and the “extra” time
you spend planning it (pay now) will save you a lot of time in debugging and
rewriting (pay later). As someone once told me, “Hours of programming will
save you minutes of planning.”

Trust me, programs written at the keyboard look like it, and that is not
meant as a compliment.

Note: This does not mean that you should never use the REPL or write any-
thing at the keyboard. If you are wondering about how a specific part of Clo-
jureScript works and need to write a small test program to find out, go ahead
and do that right away.

Hint: Do your design on paper. Don’t try to keep the whole thing in your
head. Draw diagrams. Sometimes a picture or a storyboard of how the messag-
es should flow will clarify your thinking. (If your parents ever asked you, “Do I
have to draw you a diagram?”, you may now confidently answer “Yes. Please do
that. It really helps.”)

Étude 8-1: TBD

73

The Design

When I first started planning this, I was going to have just two processes com-
municating with one another, as it is in a real game. But let’s think about that.
There is a slight asymmetry between the players. One person usually brings the
cards and suggests playing the game. He shuffles the deck and deals out the
cards at the beginning. Once that’s done, things even out. The game play itself
proceeds almost automatically. Neither player is in control of the play, yet both
of them are. It seems as if there is an implicit, almost telepathic communication
between the players. Of course, there are no profound metaphysical issues
here. Both players are simultaneously following the same set of rules. And
that’s the point that bothered me: who makes the “decisions” in the program? I
decided to sidestep the issue by introducing a third agent, the dealer, who is
responsible for giving the cards to each player at the start of the game. The
dealer then can tell each player to turn over cards, make a decision as to who
won, and then tell a particular player to take cards. This simplifies the message
flow considerably.

In my code, the dealer had to keep track of:

• The players’ channels
• The current state of play (see the following)
• Cards received from player 1 for this battle
• Cards received from player 2 for this battle
• The pile of cards in the middle of the table

The dealer initializes the players, and then is in one of the following states.
I’m going to anthropomorphize and use “me” to represent the dealer.

Pre-battle
Tell the players to send me cards. If the pile is empty, then it’s a normal bat-
tle; give me one card each. If the pile isn’t empty, then it’s a war; give me
three cards.

Battle
Wait to receive the cards from the players. If either player has sent me an
empty list for their cards, then that player is out of cards, so the other player
must be the winner. Send both players a message to quit looping for mes-
sages.
If I really have cards from both players, compare them. If one player has the
high card, give that player the pile plus the cards currently in play, and go
into post-battle state. Otherwise, the cards match. Add the cards currently in
play to the pile, and go back to “Pre-battle” state.

CHAPTER 8: Asynchronous processing

74

Post-battle
Wait for the person to pick up the cards sent by the dealer. If you’ve hit the
maximum number of rounds, go to long-game state. Otherwise, go back to
“Pre-battle” state.

Long-game
The game has taken too many moves. Ask both players for the number of
cards they have, and tell them both to quit looping. The winner is the player
with the smaller number of cards (or a tie if they have the same number of
cards).

Note that this is my implementation; you may find an entirely different and
better way to write the program.

Messages Are Asynchronous

Remember that the order in which a process receives messages may not be the
same order in which they were sent. For example, if players Annie and Brian
have a battle, and Annie wins, you may be tempted to send these messages:

1. Tell Annie to pick up the two cards that were in the battle.
2. Tell Annie to send you a card for the next battle.
3. Tell Brian to send you a card for the next battle.

This works nicely unless Annie had just thrown her last card down for that
battle and message two arrives before message one. Annie will report that she
is out of cards, thus losing the game, even though she’s really still in the game
with the two cards that she hasn’t picked up yet.

Representing the Deck

I decided to represent the deck as a vector of the numbers 0 through 51 (inclu-
sive); 0 through 12 are the Ace through King of clubs, 13 through 25 are dia-
monds, then hearts, then spades. (That is, the suits are in English alphabetical
order.) You will find ClojureScript’s shuffle function to be quite useful. I wrote
a small module in a file named utils.cljs for functions such as converting a card
number to its suit and name and finding a card’s value.

If you want to make a web-based version of the game, you will find a set of
SVG images of playing cards in the datafiles/chapter08/images directory, with
names 0.svg through 51.svg. These file names correspond to the numbering de-
scribed in the preceding paragraph. The file blue_grid_back.svg contains the
image of the back of a playing card.

Étude 8-1: TBD

75

Note: You may want to generate a small deck with, say, only four cards in
two suits. If you try to play with a full deck, the game could go on for a very long
time.

Here is output from a game:

Starting Player 1 with [2 0 16 13 14 18]
Starting Player 2 with [1 4 3 15 17 5]
** Starting round 1
Player 1 has [2 0 16 13 14 18] sending dealer (2)
Player 2 has [1 4 3 15 17 5] sending dealer (1)
3 of clubs vs. 2 of clubs
Player 2 receives [2 1] add to [4 3 15 17 5]
** Starting round 2
Player 1 has [0 16 13 14 18] sending dealer (0)
Player 2 has [4 3 15 17 5 2 1] sending dealer (4)
Ace of clubs vs. 5 of clubs
Player 2 receives [0 4] add to [3 15 17 5 2 1]
** Starting round 3
Player 1 has [16 13 14 18] sending dealer (16)
Player 2 has [3 15 17 5 2 1 0 4] sending dealer (3)
4 of diamonds vs. 4 of clubs
** Starting round 4
Player 2 has [15 17 5 2 1 0 4] sending dealer (15 17 5)
Player 1 has [13 14 18] sending dealer (13 14 18)
6 of diamonds vs. 6 of clubs
** Starting round 5
Player 1 has [] sending dealer ()
Player 2 has [2 1 0 4] sending dealer (2 1 0)
nil vs. Ace of clubs
Winner: Player 1

See a suggested solution: “Solution 8-1”.

CHAPTER 8: Asynchronous processing

76

Solutions

Here are suggested solutions for the études. Of course, your solutions may well
be entirely different, and better.

Solution 1-2

(ns formulas.core
 (:require [clojure.browser.repl :as repl]))

(defonce conn
 (repl/connect "http://localhost:9000/repl"))

(enable-console-print!)

(defn distance
 "Calculate distance traveled by an object moving
 with a given acceleration for a given amount of time."
 [accel time]
 (* accel time time))

(defn kinetic-energy
 "Calculate kinetic energy given mass and velocity"
 [m v]
 (/ (* m v v) 2.0))

(defn centripetal
 "Calculate centripetal acceleration given velocity and radius"
 [v r]
 (/ (* v v) r))

(defn average
 "Calculate average of two numbers"
 [a b]
 (/ (+ a b) 2.0))

(defn variance

77

A

 "Calculate variance of two numbers"
 [a b]
 (- (* 2 (+ (* a a) (* b b))) (* (+ a b) (+ a b))))

Solution 1-3

(def G 6.6784e-11)

(defn gravitational-force
 "Calculate gravitational force of two objects of
 mass m1 and m2, with centers of gravity at a distance r"
 [m1 m2 r]
 (/ (* G m1 m2) (* r r)))

Solution 1-4

(defn monthly-payment
 "Calculate monthly payment on a loan of amount p,
 with annual percentage rate apr, and a given number of years"
 [p apr years]
 (let [r (/ (/ apr 100) 12.0)
 n (* years 12)
 factor (.pow js/Math (+ 1 r) n)]
 (* p (/ (* r factor) (- factor 1)))))

Solution 1-5

(defn radians
 "Convert degrees to radians"
 [degrees]
 (* (/ (.-PI js/Math) 180) degrees))

(defn daylight
 "Find minutes of daylight given latitude in degrees and day of year.
 Formula from http://mathforum.org/library/drmath/view/56478.html"
 [lat-degrees day]
 (let [lat (radians lat-degrees)
 part1 (* 0.9671396 (.tan js/Math (* 0.00860 (- day 186))))
 part2 (.cos js/Math (+ 0.2163108 (* 2 (.atan js/Math part1))))
 p (.asin js/Math (* 0.39795 part2))
 numerator (+ (.sin js/Math 0.01454) (* (.sin js/Math lat) (.sin js/Math p)))
 denominator (* (.cos js/Math lat) (.cos js/Math p))]
 (* 60 (- 24 (* 7.63944 (.acos js/Math (/ numerator denominator)))))))

Appendix A, Solutions78

Solution 2-1

(ns daylight-js.core
 (:require [clojure.browser.repl :as repl]))

(enable-console-print!)

(defonce conn
 (repl/connect "http://localhost:9000/repl"))

(defn radians
 "Convert degrees to radians"
 [degrees]
 (* (/ (.-PI js/Math) 180) degrees))

(defn daylight
 "Find minutes of daylight given day of year and latitude in degrees.
 Formula from http://mathforum.org/library/drmath/view/56478.html"
 [day lat-degrees]
 (let [lat (radians lat-degrees)
 part1 (* 0.9671396 (tan js/Math (* 0.00860 (- day 186))))
 part2 (cos js/Math (+ 0.2163108 (* 2 (atan js/Math part1))))
 p (asin js/Math (* 0.39795 part2))
 numerator (+ (sin js/Math 0.01454) (* (sin js/Math lat) (sin js/Math p)))
 denominator (* (cos js/Math lat) (cos js/Math p))]
 (* 60 (- 24 (* 7.63944 (acos js/Math (/ numerator denominator)))))))

(defn get-float-value
 "Get the floating point value of a field"
 [field]
 (.parseFloat js/window (.-value (.getElementById js/document field))))

(defn calculate [evt]
 (let [lat-d (get-float-value "latitude")
 julian (get-float-value "julian")
 minutes (daylight lat-d julian)]
 (set! (.-innerHTML (.getElementById js/document "result")) minutes)))

(.addEventListener (.getElementById js/document "calculate") "click" calculate)

Solution 2-2

Much of the code is duplicated from the previous étude, only new code is
shown here, with ellipses to represent omitted code.

(ns daylight-gc.core
 (:require [clojure.browser.repl :as repl]

Solution 2-1 79

 [goog.dom :as dom]
 [goog.events :as events]))

...

(defn radians...)

(defn daylight...)

(defn get-float-value
 "Get the floating point value of a field"
 [field]
 (.parseFloat js/window (.-value (dom/getElement field))))

(defn calculate [evt]
 (let [lat-d (get-float-value "latitude")
 julian (get-float-value "julian")
 minutes (daylight lat-d julian)]
 (dom/setTextContent (dom/getElement "result") minutes)))

(events/listen (dom/getElement "calculate") "click" calculate)

Solution 2-3

Much of the code is duplicated from the previous étude. Only new code is
shown here, with ellipses to represent omitted code.

(ns daylight-dommy.core
 (:require [clojure.browser.repl :as repl]
 [dommy.core :as dommy :refer-macros [sel sel1]]))

...

(defn radians ...)

(defn daylight ...)

(defn get-float-value
 "Get the floating point value of a field"
 [field]
 (.parseFloat js/window (dommy/value (sel1 field))))

(defn calculate [evt]
 (let [lat-d (get-float-value "#latitude")
 julian (get-float-value "#julian")
 minutes (daylight lat-d julian)]
 (dommy/set-text! (sel1 "#result") minutes)))

Appendix A, Solutions80

(dommy/listen! (sel1 "#calculate") :click calculate)

Solution 2-4

Much of the code is duplicated from the previous étude. Only new code is
shown here, with ellipses to represent omitted code.

(ns daylight-domina.core
 (:require [clojure.browser.repl :as repl]
 [domina]
 [domina.events :as events]))
...

(defn radians ...)

(defn daylight ...)

(defn get-float-value
 "Get the floating point value of a field"
 [field]
 (.parseFloat js/window (domina/value (domina/by-id field))))

(defn calculate [evt]
 (let [lat-d (get-float-value "latitude")
 julian (get-float-value "julian")
 minutes (daylight lat-d julian)]
 (domina/set-text! (domina/by-id "result") minutes)))

(events/listen! (domina/by-id "calculate") :click calculate)

Solution 2-5

Much of the code is duplicated from the previous étude. Only new code is
shown here, with ellipses to represent omitted code.

(ns daylight-enfocus.core
 (:require [clojure.browser.repl :as repl]
 [enfocus.core :as ef]
 [enfocus.events :as ev]))

...

(defn daylight ...)

(defn get-float-value

Solution 2-4 81

 "Get the floating point value of a field"
 [field]
 (.parseFloat js/window (ef/from field (ef/get-prop :value))))

(defn calculate [evt]
 (let [lat-d (get-float-value "#latitude")
 julian (get-float-value "#julian")
 minutes (daylight lat-d julian)]
 (ef/at "#result" (ef/content (.toString minutes)))))

(ef/at "#calculate" (ev/listen :click calculate))

Solution 3-1

(defn move-zeros
 "Move zeros to end of a list or vector of numbers"
 [numbers]
 (let [nonzero (filter (fn[x] (not= x 0)) numbers)]
 (concat nonzero
 (repeat (- (count numbers) (count nonzero)) 0))))

Solution 3-2

(ns daylight-by-date.core
 (:require [clojure.browser.repl :as repl]
 [clojure.string :as str]
 [domina]
 [domina.events :as events]))

(enable-console-print!)

(defonce conn
 (repl/connect "http://localhost:9000/repl"))

(defn radians
 "Convert degrees to radians"
 [degrees]
 (* (/ (.-PI js/Math) 180) degrees))

(defn daylight
 "Find minutes of daylight given latitude in degrees and day of year.
 Formula from http://mathforum.org/library/drmath/view/56478.html"
 [lat-degrees day]
 (let [lat (radians lat-degrees)
 part1 (* 0.9671396 (.tan js/Math (* 0.00860 (- day 186))))
 part2 (.cos js/Math (+ 0.2163108 (* 2 (.atan js/Math part1))))
 p (.asin js/Math (* 0.39795 part2))

Appendix A, Solutions82

 numerator (+ (.sin js/Math 0.01454) (* (.sin js/Math lat) (.sin js/Math p)))
 denominator (* (.cos js/Math lat) (.cos js/Math p))]
 (* 60 (- 24 (* 7.63944 (.acos js/Math (/ numerator denominator)))))))

(defn get-float-value
 "Get the floating point value of a field"
 [field]
 (.parseFloat js/window (domina/value (domina/by-id field))))

(defn leap-year?
 "Return true if given year is a leap year; false otherwise"
 [year]
 (or (and (= 0 (rem year 4)) (not= 0 (rem year 100)))
 (= 0 (rem year 400))))

(defn ordinal-day
 "Compute ordinal day given Gregorian day, month, and year"
 [day month year]
 (let [leap (leap-year? year)
 feb-days (if leap 29 28)
 days-per-month [0 31 feb-days 31 30 31 30 31 31 30 31 30 31]
 month-ok (and (> month 0) (< month 13))
 day-ok (and month-ok (> day 0) (<= day (+ (nth days-per-month month))))
 subtotal (reduce + (take month days-per-month))]
 (if day-ok (+ subtotal day) 0)))

(defn to-julian
 "Convert Gregorian date to Julian"
 []
 (let [greg (domina/value (domina/by-id "gregorian"))
 parts (str/split greg #"[-/]")
 [y m d] (map (fn [x] (.parseInt js/window x 10)) parts)]
 (ordinal-day d m y)))

(defn calculate [evt]
 (let [lat-d (get-float-value "latitude")
 julian (to-julian)
 minutes (daylight lat-d julian)]
 (domina/set-text! (domina/by-id "result") (str (quot minutes 60) "h "
 (.toFixed (rem minutes 60) 2) "m"))))

(events/listen! (domina/by-id "calculate") :click calculate)

Solution 3-3

(defn mean
 "Compute mean of a sequence of numbers."
 [x]

Solution 3-3 83

 (let [n (count x)]
 (/ (apply + x) n)))

(defn median
 "Compute median of a sequence of numbers."
 [x]
 (let [n (count x)
 remainder (drop (- (int (/ n 2)) 1) (sort x))]
 (if (odd? n)
 (second remainder)
 (/ (+ (first remainder) (second remainder)) 2))))

(defn getsums
 "Reducing function for computing sum and sum of squares.
 The accumulator is a two-vector with the current sum and sum of squares
 Could be made clearer with destructuring, but that's not in
 this chapter."
 [acc item]
 (vector (+ (first acc) item) (+ (last acc) (* item item))))

(defn stdev
 "Compute standard deviation of a sequence of numbers"
 [x]
 (let [[sum sumsq] (reduce getsums [0 0] x)
 n (count x)]
 (.sqrt js/Math (/ (- sumsq (/ (* sum sum) n)) (- n 1)))))

Solution 3-4

This solution uses the Domina library to interact with the web page. The ns spe-
cial form needs to be updated to require the correct libraries.

(ns stats.core
 (:require [clojure.browser.repl :as repl]
 [clojure.string :as str]
 [domina :as dom]
 [domina.events :as ev]))

This is the additional code for interacting with the web page.

(defn calculate
 "Event handler"
 [evt]
 (let [numbers (map js/window.parseFloat
 (str/split (domina/value (ev/target evt)) #"[,]+"))]
 (domina/set-text! (domina/by-id "mean") (mean numbers))
 (domina/set-text! (domina/by-id "median") (median numbers))
 (domina/set-text! (domina/by-id "stdev") (stdev numbers))))

Appendix A, Solutions84

;; connect event handler
(ev/listen! (domina/by-id "numbers") :change calculate)

Solution 3-5

(ns teeth.core
 (:require [clojure.browser.repl :as repl]))

(defonce conn
 (repl/connect "http://localhost:9000/repl"))

(enable-console-print!)

(def pocket-depths
 [[0], [2 2 1 2 2 1], [3 1 2 3 2 3],
 [3 1 3 2 1 2], [3 2 3 2 2 1], [2 3 1 2 1 1],
 [3 1 3 2 3 2], [3 3 2 1 3 1], [4 3 3 2 3 3],
 [3 1 1 3 2 2], [4 3 4 3 2 3], [2 3 1 3 2 2],
 [1 2 1 1 3 2], [1 2 2 3 2 3], [1 3 2 1 3 3], [0],
 [3 2 3 1 1 2], [2 2 1 1 3 2], [2 1 1 1 1 2],
 [3 3 2 1 1 3], [3 1 3 2 3 2], [3 3 1 2 3 3],
 [1 2 2 3 3 3], [2 2 3 2 3 3], [2 2 2 4 3 4],
 [3 4 3 3 3 4], [1 1 2 3 1 2], [2 2 3 2 1 3],
 [3 4 2 4 4 3], [3 3 2 1 2 3], [2 2 2 2 3 3],
 [3 2 3 2 3 2]])

(defn bad-tooth
 "Accumulator: vector of bad tooth numbers
 and current index"
 [[bad-list index] tooth]
 (if (some (fn[x] (>= x 4)) tooth)
 (vector (conj bad-list index) (inc index))
 (vector bad-list (inc index))))

(defn alert
 "Display tooth numbers where any of the
 pocket depths is 4 or greater."
 [depths]
 (first (reduce bad-tooth [[] 1] depths)))

Solution 3-6

(ns make_teeth.core
 (:require [clojure.browser.repl :as repl]))

(defonce conn

Solution 3-5 85

 (repl/connect "http://localhost:9000/repl"))

(defn one-tooth
 "Generate one tooth"
 [present probability]
 (if (= present "F") []
 (let [base-depth (if (< (rand) probability) 2 3)]
 (loop [n 6
 result []]
 (if (= n 0) result
 (recur (dec n) (conj result (+ base-depth (- 1 (rand-int 3))))))))))

(defn generate-list
 "Take list of teeth, probability, and current vector of vectors.
 Add pockets for each tooth."
 [teeth-present probability result]
 (if (empty? teeth-present) result
 (recur (rest teeth-present) probability (conj result (one-tooth (first teeth-present) probability)))))

(defn generate-pockets
 "Take list of teeth present and probability of a good tooth,
 and create a list of pocket depths."
 [teeth-present probability]
 (generate-list teeth-present probability []))

Solution 3-7

This suggested solution uses the Enfocus library to interact with the web page.

(ns daylight-summary.core
 (:require [clojure.browser.repl :as repl]
 [enfocus.core :as ef]
 [enfocus.events :as ev]))

(defonce conn
 (repl/connect "http://localhost:9000/repl"))

(enable-console-print!)

(defn radians
 "Convert degrees to radians"
 [degrees]
 (* (/ (.-PI js/Math) 180) degrees))

(defn daylight
 "Find minutes of daylight given day of year and latitude in degrees.
 Formula from http://mathforum.org/library/drmath/view/56478.html"
 [lat-degrees day]

Appendix A, Solutions86

https://github.com/ckirkendall/enfocus

 (let [lat (radians lat-degrees)
 part1 (* 0.9671396 (.tan js/Math (* 0.00860 (- day 186))))
 part2 (.cos js/Math (+ 0.2163108 (* 2 (.atan js/Math part1))))
 p (.asin js/Math (* 0.39795 part2))
 numerator (+ (.sin js/Math 0.01454) (* (.sin js/Math lat) (.sin js/Math p)))
 denominator (* (.cos js/Math lat) (.cos js/Math p))]
 (* 60 (- 24 (* 7.63944 (.acos js/Math (/ numerator denominator)))))))

(defn make-ranges
 "Return vector of begin-end ordinal dates for a list of days per month"
 [mlist]
 (reduce (fn [acc x] (conj acc (+ x (last acc)))) [1] (rest mlist)))

(def month-ranges
 "Days per month for non-leap years"
 (make-ranges '(0 31 28 31 30 31 30 31 31 30 31 30 31)))

(defn to-hours-minutes
 "Convert minutes to hours and minutes"
 [m]
 (str (quot m 60) "h " (.toFixed (mod m 60) 0) "m"))

(defn get-value
 "Get the value from a field"
 [field]
 (ef/from field (ef/get-prop :value)))

(defn mean
 "Compute mean of a sequence of numbers."
 [x]
 (/ (apply + x) (count x)))

(defn mean-daylight
 "Get mean daylight for a range of days"
 [start finish latitude]
 (let [f (fn [x] (daylight latitude x))]
 (mean (map f (range start finish)))))

(defn generate-averages
 "Generate monthly averages for a given latitude"
 [latitude]
 (loop [ranges month-ranges
 result []]
 (if (< (count ranges) 2)
 result
 (recur (rest ranges)
 (conj result (mean-daylight (first ranges) (second ranges) latitude))))))

(defn calculate [evt]
 (let [fromMenu (first (ef/from "input[name='locationType']" (ef/get-prop :checked)))

Solution 3-7 87

 lat-d (if fromMenu (.parseFloat js/window (get-value "#cityMenu"))
 (.parseFloat js/window (get-value "#latitude")))
 averages (generate-averages lat-d)]
 (doall (map-indexed
 (fn [n item] (ef/at (str "#m" (inc n)) (ef/content (to-hours-minutes item))))
 averages))))

(ef/at "#calculate" (ev/listen :click calculate))

Solution 4-1

(ns condiments.core
 (:require [cljs.nodejs :as nodejs]))

(nodejs/enable-util-print!)

(def xml (js/require "node-xml-lite"))

;; forward reference
(declare process-child)

(defn process-children
 "Process an array of child nodes, with a current food name
 and accumulate a result"
 [[food result] children]
 (let [[final-food final-map] (reduce process-child [food result] children)]
 [final-food final-map]))

(defn add-condiment
 "Add food to the vector of foods that go with this condiment"
 [result food condiment]
 (let [food-list (get result condiment)
 new-list (if food-list (conj food-list food) [food])]
 (assoc result condiment new-list)))

(defn process-child
 "Given a current food and result map, and an item,
 return the new food name and result map"
 [[food result] item]

 ;; The first child of an element is text - either a food name
 ;; or a condiment name, depending on the element name.
 (let [firstchild (first (.-childs item))]
 (cond
 (= (.-name item) "display_name") (vector firstchild result)
 (.test #"cond_._name" (.-name item))
 (vector food (add-condiment result food firstchild))
 (and (.-childs item) (.-name firstchild))

Appendix A, Solutions88

 (process-children [food result] (.-childs item))
 :else [food result])))

(defn -main []
 (let [docmap (.parseFileSync xml (nth (.-argv js/process) 2))]
 (println (last (process-children ["" {}] (.-childs docmap))))))

(set! *main-cli-fn* -main)

Solution 4-2A

This is a sample web server that simply echoes back the user’s input. Use this as
a guide for the remainder of the étude.

(ns servertest.core
 (:require-macros [hiccups.core :as hiccups])
 (:require [cljs.nodejs :as nodejs]
 [hiccups.runtime :as hiccupsrt]))

(nodejs/enable-util-print!)

(def express (nodejs/require "express"))

(defn generate-page! [request response]
 (let [query (.-query request)
 user-name (if query (.-userName query) "")]
 (.send response
 (hiccups/html
 [:html
 [:head [:title "Server Example"]
 [:meta {:http-equiv "Content-type" :content "text/html"
 :charset "utf-8"}]]
 [:body
 [:p "Enter your name:"]
 [:form {:action "/"
 :method "get"}
 [:input {:name "userName" :value user-name}]
 [:input {:type "submit" :value "Send Data"}]]
 [:p (if (and user-name (not= user-name ""))
 (str "Pleased to meet you, " user-name ".") "")]]]))))

(defn -main []
 (let [app (express)]
 (.get app "/" generate-page!)
 (.listen app 3000
 (fn []
 (println "Server started on port 3000")))))

Solution 4-2A 89

(set! *main-cli-fn* -main)

Solution 4-2B

This is a solution for the condiment matcher web page. It has separated the
code for creating the condiment map from the XML page into a separate file to
keep the code cleaner.

(ns foodserver.mapmaker)

(def xml (js/require "node-xml-lite"))

;; forward reference
(declare process-child)

(defn process-children
 "Process an array of child nodes, with a current food name
 and accumulate a result"
 [[food result] children]
 (let [[final-food final-map] (reduce process-child [food result] children)]
 [final-food final-map]))

(defn add-condiment
 "Add food to the vector of foods that go with this condiment"
 [result food condiment]
 (let [food-list (get result condiment)
 new-list (if food-list (conj food-list food) [food])]
 (assoc result condiment new-list)))

(defn process-child
 "Given a current food and result map, and an item,
 return the new food name and result map"
 [[food result] item]

 ;; The first child of an element is text - either a food name
 ;; or a condiment name, depending on the element name.
 (let [firstchild (first (.-childs item))]
 (cond
 (= (.-name item) "display_name") (vector firstchild result)
 (.test #"cond_._name" (.-name item))
 (vector food (add-condiment result food firstchild))
 (and (.-childs item) (.-name firstchild))
 (process-children [food result] (.-childs item))
 :else [food result])))

(defn foodmap [filename]

Appendix A, Solutions90

 (let [docmap (.parseFileSync xml filename)]
 (last (process-children ["" {}] (.-childs docmap)))))

Here is the main file.

(ns foodserver.core
 (:require-macros [hiccups.core :as hiccups])
 (:require [cljs.nodejs :as nodejs]
 [hiccups.runtime :as hiccupsrt]
 [foodserver.mapmaker :as mapmaker]
 [clojure.string :as str]))

(nodejs/enable-util-print!)

(def express (nodejs/require "express"))

(def foodmap (mapmaker/foodmap "food.xml"))

(defn case-insensitive [a b]
 (compare (str/upper-case a) (str/upper-case b)))

(defn condiment-menu
 "Create HTML menu with the given selection
 as the 'selected' item"
 [selection]
 (map (fn [item] [:option
 (if (= item selection){:value item :selected "selected"} {:value item})
 item])
 (sort case-insensitive (keys foodmap))))

(defn compatible-foods
 "Create unordered list of foods compatible with selected condiment"
 [selection]
 (if selection
 (map (fn [item] [:li item]) (sort case-insensitive (foodmap selection)))
 nil))

(defn generate-page! [request response]
 (let [query (.-query request)
 chosen-condiment (if query (.-condiment query) "")]
 (.send response
 (hiccups/html
 [:html
 [:head
 [:title "Condiment Matcher"]
 [:meta {:http-equiv "Content-type"
 :content "text/html; charset=utf-8"}]]
 [:body
 [:h1 "Condiment Matcher"]

Solution 4-2B 91

 [:form {:action "http://localhost:3000"
 :method "get"}
 [:select {:name "condiment"}
 [:option {:value ""} "Choose a condiment"]
 (condiment-menu chosen-condiment)]
 [:input {:type "submit" :value "Find Compatible Foods"}]]
 [:ul (compatible-foods chosen-condiment)]
 [:p "Source data: "
 [:a {:href "http://catalog.data.gov/dataset/mypyramid-food-raw-data-f9ed6"}
 "MyPyramid Food Raw Data"]
 " from the Food and Nutrition Service of the United States Department of Agriculture."]]]))))

(defn -main []
 (let [app (express)]
 (.get app "/" generate-page!)
 (.listen app 3000 (fn []
 (println "Server started on port 3000")))))

(set! *main-cli-fn* -main)

Solution 4-3

Here is the code for reading a file line by line:

File cljs_made_easy/line_seq.clj

 ;; This is a macro, and must be in clojure. It's name and location is the same as
;; the cljs file, except with a .clj extension.
(ns cljs-made-easy.line-seq
 (:refer-clojure :exclude [with-open]))

(defmacro with-open [bindings & body]
 (assert (= 2 (count bindings)) "Incorrect with-open bindings")
 `(let ~bindings
 (try
 (do ~@body)
 (finally
 (.closeSync cljs-made-easy.line-seq/fs ~(bindings 0))))))

File cljs_made_easy/line_seq.cljs

(ns cljs-made-easy.line-seq
 (:require clojure.string)
 (:require-macros [cljs-made-easy.line-seq :refer [with-open]]))

(def fs (js/require "fs"))

Appendix A, Solutions92

(defn- read-chunk [fd]
 (let [length 128
 b (js/Buffer. length)
 bytes-read (.readSync fs fd b 0 length nil)]
 (if (> bytes-read 0)
 (.toString b "utf8" 0 bytes-read))))

(defn line-seq
 ([fd]
 (line-seq fd nil))
 ([fd line]
 (if-let [chunk (read-chunk fd)]
 (if (re-find #"\n" (str line chunk))
 (let [lines (clojure.string/split (str line chunk) #"\n")]
 (if (= 1 (count lines))
 (lazy-cat lines (line-seq fd))
 (lazy-cat (butlast lines) (line-seq fd (last lines)))))
 (recur fd (str line chunk)))
 (if line
 (list line)
 ()))))

File frequency/core.cljs

And this is the code to create the frequency table

(ns frequency.core
 (:require [cljs.nodejs :as nodejs]
 [clojure.string :as str]
 [cljs-made-easy.line-seq :as cme]))

(nodejs/enable-util-print!)

(def filesystem (js/require "fs")) ;;require nodejs lib

;; These keywords are the "column headers" from the spreadsheet.
;; An entry of nil means that I am ignoring that column.
(def headers [:date :time nil :accident :injury :property-damage :fatal nil
 :vehicle :year :make :model :color :type nil :race :gender :driver-state nil])

(defn zipmap-omit-nil
 "Does the same as zipmap, except when there's a nil in the
 first vector, it doesn't put anything into the map.
 I wrote it this way just to prove to myself that I could do it.
 It's easier to just say (dissoc (zipmap a-vec b-vec) nil)"
 [a-vec b-vec]
 (loop [result {}
 a a-vec

Solution 4-3 93

 b b-vec]
 (if (or (empty? a) (empty? b))
 result
 (recur (if-not (nil? (first a))
 (assoc result (first a) (first b))
 result)
 (rest a) (rest b)))))

(defn add-row
 "Convenience function that adds a row from the CSV file
 to the data map."
 [line]
 (zipmap-omit-nil headers (str/split line #"\t")))

(defn create-data-structure
 "Create a vector of maps from a tab-separated value file
 and a list of header keywords."
 [filename headers]
 (cme/with-open [file-descriptor (.openSync filesystem filename "r")]
 (reduce (fn [result line] (conj result (add-row line))) [] (rest (cme/line-seq file-descriptor)))))

(def traffic (create-data-structure "traffic_july_2014_edited.csv" headers))

(defn frequency-table
 "Accumulate frequencies for specifier (a heading keyword
 or a function that returns a value) in data-map,
 optionally returning a total."
 [data-map specifier]
 (let [result-map (reduce
 (fn [acc item]
 (let [v (if specifier (specifier item) nil)]
 (assoc acc v (+ 1 (get acc v)))))
 {} data-map)
 result-seq (sort (seq result-map))
 freq (map last result-seq)]
 [(vec (map first result-seq)) (vec freq) (reduce + freq)]))

(defn -main []
 (println "Hello world!"))

(set! *main-cli-fn* -main)

Solution 4-4

The code for reading the CSV file is unchanged from the previous étude, so I
won’t repeat it here.

Appendix A, Solutions94

(ns crosstab.core
 (:require [cljs.nodejs :as nodejs]
 [clojure.string :as str]
 [cljs-made-easy.line-seq :as cme]))

(nodejs/enable-util-print!)

(def filesystem (js/require "fs")) ;;require nodejs lib

;; These keywords are the "column headers" from the spreadsheet.
;; An entry of nil means that I am ignoring that column.
(def headers [:date :time nil :accident :injury :property-damage :fatal nil
 :vehicle :year :make :model :color :type nil :race :gender :driver-state nil])

(defn zipmap-omit-nil
 "Does the same as zipmap, except when there's a nil in the
 first vector, it doesn't put anything into the map.
 I wrote it this way just to prove to myself that I could do it.
 It's easier to just say (dissoc (zipmap a-vec b-vec) nil)"
 [a-vec b-vec]
 (loop [result {}
 a a-vec
 b b-vec]
 (if (or (empty? a) (empty? b))
 result
 (recur (if-not (nil? (first a))
 (assoc result (first a) (first b))
 result)
 (rest a) (rest b)))))

(defn add-row
 "Convenience function that adds a row from the CSV file
 to the data map."
 [line]
 (zipmap-omit-nil headers (str/split line #"\t")))

(defn create-data-structure
 "Create a vector of maps from a tab-separated value file
 and a list of header keywords."
 [filename headers]
 (cme/with-open [file-descriptor (.openSync filesystem filename "r")]
 (reduce (fn [result line] (conj result (add-row line))) []
 (rest (cme/line-seq file-descriptor)))))

(def traffic (create-data-structure "traffic_july_2014_edited.csv" headers))

(defn marginal
 "Get marginal totals for a frequency map. (Utility function)"
 [freq]
 (vec (map last (sort (seq freq)))))

Solution 4-4 95

(defn cross-tab
 "Accumulate frequencies for given row and column in data-map,
 returning row and column totals, plus grand total."
 [data-map row-spec col-spec]

 ; In the following call to reduce, the accumulator is a
 ; vector of three maps.
 ; The first maps row values => frequency
 ; The second maps column values => frequency
 ; The third is a map of maps, mapping row values => column values => frequency

 (let [[row-freq col-freq cross-freq] (reduce
 (fn [acc item]
 (let [r (if row-spec (row-spec item) nil)
 c (if col-spec (col-spec item) nil)]
 [(assoc (first acc) r (+ 1 (get (first acc) r)))
 (assoc (second acc) c (+ 1 (get (second acc) c)))
 (assoc-in (last acc) [r c] (+ 1 (get-in (last acc) [r c])))]))
 [{} {} {}] data-map)
 ; I need row totals as part of the return, and I also
 ; add them to get grand total - don't want to re-calculate
 row-totals (marginal row-freq)]
 [(vec (sort (keys row-freq)))
 (vec (sort (keys col-freq)))
 (vec (for [r (sort (keys row-freq))]
 (vec (for [c (sort (keys col-freq))]
 (if-let [n (get-in cross-freq (list r c))] n 0)))))
 row-totals
 (marginal col-freq)
 (reduce + row-totals)]))

(defn frequency-table
 "Accumulate frequencies for specifier in data-map,
 optionally returning a total. Use a call to cross-tab
 to re-use code."
 [data-map specifier]
 (let [[row-labels _ row-totals _ grand-total] (cross-tab data-map specifier nil)]
 [row-labels (vec (map first row-totals)) grand-total]))

(defn -main []
 (println "Hello world!"))

(set! *main-cli-fn* -main)

Appendix A, Solutions96

Solution 4-5

The cross-tabulation functions from “Solution 4-4” are moved to a file named
crosstab.cljs and the initial (ns...) changed accordingly.

(ns traffic.core
 (:require-macros [hiccups.core :as hiccups])
 (:require [cljs.nodejs :as nodejs]
 [clojure.string :as str]
 [cljs-made-easy.line-seq :as cme]
 [hiccups.runtime :as hiccupsrt]
 [traffic.crosstab :as ct]))

(nodejs/enable-util-print!)

(def express (nodejs/require "express"))

(def filesystem (js/require "fs")) ;;require nodejs lib

;; These keywords are the "column headers" from the spreadsheet.
;; An entry of nil means that I am ignoring that column.
(def headers [:date :time nil :accident :injury :property-damage :fatal nil
 :vehicle :year :make :model :color :type nil :race :gender :driver-state nil])

(defn zipmap-omit-nil
 "Does the same as zipmap, except when there's a nil in the
 first vector, it doesn't put anything into the map.
 I wrote it this way just to prove to myself that I could do it.
 It's easier to just say (dissoc (zipmap a-vec b-vec) nil)"
 [a-vec b-vec]
 (loop [result {}
 a a-vec
 b b-vec]
 (if (or (empty? a) (empty? b))
 result
 (recur (if-not (nil? (first a))
 (assoc result (first a) (first b))
 result)
 (rest a) (rest b)))))

(defn add-row
 "Convenience function that adds a row from the CSV file
 to the data map."
 [line]
 (zipmap-omit-nil headers (str/split line #"\t")))

(defn create-data-structure
 "Create a vector of maps from a tab-separated value file
 and a list of header keywords."

Solution 4-5 97

 [filename headers]
 (cme/with-open [file-descriptor (.openSync filesystem filename "r")]
 (reduce (fn [result line] (conj result (add-row line))) [] (rest (cme/line-seq file-descriptor)))))

(def traffic (create-data-structure "traffic_july_2014_edited.csv" headers))

(defn day [entry] (.substr (:date entry) 3 2))
(defn hour [entry] (.substr (:time entry) 0 2))

(def field-list [
 ["Choose a field" nil]
 ["Day" day]
 ["Hour" hour]
 ["Accident" :accident]
 ["Injury" :injury]
 ["Property Damage" :property-damage]
 ["Fatal" :fatal]
 ["Vehicle year" :year]
 ["Vehicle Color" :color]
 ["Driver's Race" :race]
 ["Driver's Gender" :gender]
 ["Driver's State" :driver-state]])

(defn traffic-menu
 "Create a <select> menu with the given choice selected"
 [option-list selection]
 (map-indexed (fn [n item]
 (let [menu-text (first item)]
 [:option
 (if (= n selection){:value n :selected "selected"} {:value n})
 menu-text]))
 option-list))

(defn field-name [n] (first (get field-list n)))
(defn field-code [n] (last (get field-list n)))

(defn add-table-row
 [row-label counts row-total result]
 (conj result (reduce (fn [acc item] (conj acc [:td item])) [:tr [:th row-label]] (conj counts row-total))))

(defn html-table
 [[row-labels col-labels counts row-totals col-totals grand-total]]
 [:div
 [:table
 (if (not (nil? (first col-labels)))
 [:thead (reduce (fn [acc item] (conj acc [:th item])) [:tr [:th "\u00a0"]]
 (conj col-labels "Total"))]
 [:thead [:tr [:th "\u00a0"] [:th "Total"]]])
 (if (not (nil? (first col-labels)))
 (vec (loop [rl row-labels

Appendix A, Solutions98

 freq counts
 rt row-totals
 result [:tbody]]
 (if-not (empty? rl)
 (recur (rest rl) (rest freq) (rest rt)
 (add-table-row (first rl) (first freq) (first rt) result))
 (add-table-row "Total" col-totals grand-total result))))
 (vec (loop [rl row-labels
 rt row-totals
 result [:tbody]]
 (if-not (empty? rl)
 (recur (rest rl) (rest rt)
 (conj result [:tr [:th (first rl)] [:td (first rt)]]))
 (conj result [:tr [:th "Total"] [:td grand-total]])))))]
])

(defn show-table
 [row-spec col-spec]
 (cond
 (and (not= 0 row-spec) (not= 0 col-spec))
 [:div [:h2 (str (field-name row-spec) " vs. " (field-name col-spec))]
 (html-table (ct/cross-tab traffic (field-code row-spec) (field-code col-spec)))]
 (not= 0 row-spec)
 [:div [:h2 (field-name row-spec)]
 (html-table (ct/cross-tab traffic (field-code row-spec) nil))]
 :else
 nil))

(defn generate-page! [request response]
 (let [query (.-query request)
 col-spec (if query (js/parseInt (.-column query)) nil)
 row-spec (if query (js/parseInt (.-row query)) nil)]
 (.send response
 (hiccups/html
 [:html
 [:head
 [:title "Traffic Violations"]
 [:meta {:http-equiv "Content-type"
 :content "text/html; charset=utf-8"}]
 [:link {:rel "stylesheet" :type "text/css" :href "style.css"}]]
 [:body
 [:h1 "Traffic Violations"]
 [:form {:action "http://localhost:3000"
 :method "get"}
 "Row: "
 [:select {:name "row"}
 (traffic-menu field-list row-spec)]
 "Column: "[:select {:name "column"}
 (traffic-menu field-list col-spec)]
 [:input {:type "submit" :value "Calculate"}]]

Solution 4-5 99

 (show-table row-spec col-spec)
 [:hr]
 [:p "Source data: "
 [:a {:href "http://catalog.data.gov/dataset/traffic-violations-56dda"}
 "Montgomery County Traffic Violation Database"]]]]))))

(defn -main []
 (let [app (express)]
 (.use app (.static express "."))
 (.get app "/" generate-page!)
 (.listen app 3000 (fn []
 (println "Server started on port 3000")))))

(set! *main-cli-fn* -main)

Solution 5-1

(ns react_q.core
 (:require [clojure.browser.repl :as repl]
 [quiescent.core :as q]
 [quiescent.dom :as d]
 [quiescent.dom.uncontrolled :as du]))

(defonce conn
 (repl/connect "http://localhost:9000/repl"))

(defonce status
 (atom {:w 0 :h 0 :proportional true
 :border-width "3" :border-style "none"
 :orig-w 0 :orig-h 0 :src "clock.jpg"}))

(enable-console-print!)

(defonce border-style-list '("none" "solid" "dotted" "dashed"
 "double" "groove" "ridge"
 "inset" "outset"))
(defn resize
 "Resize the image; if proportional, determine which field
 has changed and change the other accordingly."
 [evt]
 (let [{:keys [w h proportional orig-w orig-h]} @status
 target (.-target evt)
 id (.-id target)
 val (.-value target)]
 (if proportional
 (cond
 (= id "w") (swap! status assoc :w val :h (int (* (/ val orig-w) orig-h)))
 (= id "h") (swap! status assoc :h val :w (int (* (/ val orig-h) orig-w)))

Appendix A, Solutions100

 :else (swap! status assoc :h orig-h :w orig-w))
 (swap! status assoc (keyword id) (.-value target)))))

(defn recheck
 "Handle the checkbox. Since the checked property isn't the
 value of the checkbox, I had to set the property by hand"
 [evt]
 (let [new-checked (not (:proportional @status))]
 (swap! status assoc :proportional new-checked)
 (set! (.-checked (.-target evt)) new-checked)))

(defn change-border [evt]
 (let [{:keys [border-width border-style]} @status
 target (.-target evt)
 id (.-id target)
 val (.-value target)]
 (cond
 (= id "menu") (swap! status assoc :border-style val)
 (= id "bw") (swap! status assoc :border-width val))))

(defn set-dimensions
 "Set dimensions of the image once it loads"
 [evt]
 (let [node (.getElementById js/document "image")
 id (.-id node)]
 (swap! status assoc :orig-w (.-naturalWidth node)
 :orig-h (.-naturalHeight node)
 :w (.-naturalWidth node) :h (.-naturalHeight node))))

(q/defcomponent Image
 "A component that displays an image"
 :name "ImageWidget"
 [status]
 (d/img {:id "image"
 :src (:src status)
 :width (:w status)
 :height (:h status)
 :style {:float "right"
 :borderWidth (:border-width status)
 :borderColor "red"
 :borderStyle (:border-style status)}
 :onLoad set-dimensions
 }))

(q/defcomponent Option
 [item]
 (d/option {:value item} item))

(q/defcomponent Form
 "Input form"

Solution 5-1 101

 :name "FormWidget"
 :on-mount (fn [node val]
 (set! (.-checked (.getElementById js/document "prop"))
 (:proportional val)))
 [status]
 (d/form {:id "params"}
 "Width: "
 (d/input {:type "text" :size "5" :value (:w status)
 :id "w"
 :onChange resize})
 "Height: "
 (d/input {:type "text" :size "5":value (:h status)
 :id "h"
 :onChange resize})
 (d/br)
 (du/input {:type "checkbox"
 :id "prop"
 :onChange recheck
 :value "proportional"})
 "Preserve Proportions"
 (d/br)
 "Border: "
 (d/input {:type "text" :size "5"
 :value (:border-width status)
 :id "bw"
 :onChange change-border})
 "px "
 (apply d/select {:id "menu" :onChange change-border}
 (map Option border-style-list))))

(q/defcomponent Interface
 "User Interface"
 :name "Interface"
 [status]
 (d/div {}
 (Image status)
 (Form status)))

(defn render
 "Render the current state atom, and schedule a render on the next
 frame"
 []
 (q/render (Interface @status) (.getElementById js/document "interface"))
 (.requestAnimationFrame js/window render))

(render)

Appendix A, Solutions102

Solution 5-2

(ns react_r.core
 (:require [clojure.browser.repl :as repl]
 [reagent.core :as reagent :refer [atom]]))

(defonce conn
 (repl/connect "http://localhost:9000/repl"))

(defonce status
 (atom {:w 0 :h 0 :proportional true
 :border-width "3" :border-style "none"
 :orig-w 0 :orig-h 0 :src "clock.jpg"}))

(enable-console-print!)

(defonce border-style-list '("none" "solid" "dotted" "dashed"
 "double" "groove" "ridge"
 "inset" "outset"))
(defn resize
 "Resize the image; if proportional, determine which field
 has changed and change the other accordingly."
 [evt]
 (let [{:keys [w h proportional orig-w orig-h]} @status
 target (.-target evt)
 id (.-id target)
 val (.-value target)]
 (if proportional
 (cond
 (= id "w") (swap! status assoc :w val :h (int (* (/ val orig-w) orig-h)))
 (= id "h") (swap! status assoc :h val :w (int (* (/ val orig-h) orig-w)))
 :else (swap! status assoc :h orig-h :w orig-w))
 (swap! status assoc (keyword id) (.-value target)))))

(defn recheck
 "Handle the checkbox. Since the checked property isn't the
 value of the checkbox, I had to set the property by hand"
 [evt]
 (let [new-checked (not (:proportional @status))]
 (swap! status assoc :proportional new-checked)
 (set! (.-checked (.-target evt)) new-checked)))

(defn change-border [evt]
 (let [{:keys [border-width border-style]} @status
 target (.-target evt)
 id (.-id target)
 val (.-value target)]
 (cond
 (= id "menu") (swap! status assoc :border-style val)

Solution 5-2 103

 (= id "bw") (swap! status assoc :border-width val))))

(defn set-dimensions
 "Set dimensions of the image once it loads"
 [evt]
 (let [node (.getElementById js/document "image")
 id (.-id node)]
 (swap! status assoc :orig-w (.-naturalWidth node)
 :orig-h (.-naturalHeight node)
 :w (.-naturalWidth node) :h (.-naturalHeight node))))

(defn image
 "A component that displays an image"
 []
 [:img {:id "image"
 :src (:src @status)
 :width (:w @status)
 :height (:h @status)
 :style {:float "right"
 :borderWidth (:border-width @status)
 :borderColor "red"
 :borderStyle (:border-style @status)}
 :on-load set-dimensions}])

(defn option [item]
 [:option {:value item :key item} item])

(defn cbox []
 (do (println "CBOX")
 [:input {:type "checkbox"
 :id "prop"
 :on-change recheck
 :value "proportional"}]))

(defn form
 "Input form"
 []
 [:form {:id "params"}
 "Width: "
 [:input {:type "text" :size "5" :value (:w @status)
 :id "w"
 :on-change resize}]
 "Height: "
 [:input {:type "text" :size "5":value (:h @status)
 :id "h"
 :on-change resize}]
 [:br]
 (cbox)
 "Preserve Proportions"
 [:br]

Appendix A, Solutions104

 "Border: "
 [:input {:type "text" :size "5"
 :value (:border-width @status)
 :id "bw"
 :on-change change-border}]
 "px "

 [:select {:id "menu" :on-change change-border}
 (for [item border-style-list]
 (option item))]])

(defn interface-without-init []
 [:div
 (image)
 (form)])

(def interface
 (with-meta interface-without-init
 {:component-did-mount
 (fn [this]
 (set! (.-checked (.getElementById js/document "prop"))
 (:proportional @status))
)}))

(defn render
 "Render the current state atom"
 []
 (reagent/render [interface] (.getElementById js/document "interface")))

(render)

Solution 6-1

In this étude, I named the project building_usage and had a module named ros-
ter.cljs to create the data structures. I also had a module named utils.cljs to han-
dle conversion of time of day to number of minutes past midnight, which
makes it easy to calculate durations. There is also a utility routine to convert
that format to 24-hour time.

The roster.cljs file includes the raw CSV as a gigantic string (well, if you con-
sider 72K bytes to be gigantic), including columns I am not using. The build-
data-structure function creates:

• A map with a day name as key...
◦ and whose value is a map with building name as a key...

Solution 6-1 105

■ whose value is a map with time (number of 15-minute inter-
vals since midnight) as key

■ and whose value is the number of rooms occupied

For this very small subset of the data:

(def roster-string "W;01:00 PM;03:25 PM;C283
TH;06:30 PM;09:35 PM;D207
W;02:45 PM;05:35 PM;C244
TH;06:00 PM;09:05 PM;D208")

The resulting map:

{"Wednesday"
 {"C" {64 1, 65 1, 66 1, 67 1, 68 1, 69 1, 70 1, 52 1, 53 1, 54 1, 55 1, 56 1,
 57 1, 58 1, 59 2, 60 2, 61 2, 62 1, 63 1}},
"Thursday"
 {"D" {72 1, 73 1, 74 2, 75 2, 76 2, 77 2, 78 2, 79 2, 80 2, 81 2, 82 2, 83 2,
 84 2, 85 1, 86 1}}}

File building_usage/src/roster.cljs

(ns building_usage.roster
 (:require [clojure.string :as str]
 [building_usage.utils :as utils]))

;; many lines omitted
(def roster-string "MW;01:00 PM;03:25 PM;C283
TH;06:30 PM;09:35 PM;D207
W;02:45 PM;05:35 PM;C244
TH;06:00 PM;09:05 PM;D208")

(def day-map {"M" "Monday", "T" "Tuesday",
 "W" "Wednesday", "R" "Thursday"
 "F" "Friday", "S" "Saturday", "N" "Sunday"})

(defn add-entries
 "Increment the usage count for the building on the given days and times.
 If there is not an entry yet, created 96 zeros (24 hours at 15-minute intervals)"
 [acc day building intervals]
 (let [current (get-in acc [(day-map day) building])
 before (if (nil? current) (into [] (repeat 96 0)) current)
 after (reduce (fn [acc item] (assoc acc item (inc (get acc item)))) before intervals)]
 (assoc-in acc [(day-map day) building] after)))

(defn building-map-entry
 "Split incoming line into parts, then add entries into the count vector
 for each day and time interval for the appropriate building."

Appendix A, Solutions106

 [acc line]
 (let [[days start-time end-time room] (str/split line #";")
 day-list (rest (str/split (str/replace (str/replace days #"TH" "R") #"SU" "N") #""))
 start-interval (quot (utils/to-minutes start-time) 15)
 end-interval (quot (+ 14 (utils/to-minutes end-time)) 15)
 building (str/replace room #"([A-Z]+).*$" "$1")]
 (loop [d day-list
 result acc]
 (if (empty? d)
 result
 (recur (rest d)
 (add-entries result (first d) building (range start-interval end-interval)))))))

(defn building-usage-map []
 (let [lines (str/split-lines roster-string)]
 (reduce building-map-entry {} lines)))

(defn room-list
 "Create a map building -> set of rooms in building"
 [acc line]
 (let [[_ _ _ room] (str/split line #";")
 building (str/replace room #"([A-Z]+).*$" "$1")
 current (acc building)]
 (assoc acc building (if (nil? current) #{room} (conj current room)))))

(defn total-rooms []
 "Create map with building as key and number of rooms in building as value."
 (let [lines (str/split-lines roster-string)
 room-list (reduce room-list {} lines)]
 (into {} (map (fn [[k v]] [k (count (room-list k))]) room-list))))

File building_usage/src/utils.cljs

(ns building_usage.utils)

(defn to-minutes [time-string]
 (let [[_ hr minute am-pm] (re-matches #"(?i)(\d\d?):(\d\d)\s*([AP])\.?M\.?" time-string)
 hour (+ (mod (js/parseInt hr) 12) (if (= (.toUpperCase am-pm) "A") 0 12))]
 (+ (* hour 60) (js/parseInt minute))))

(defn pad [n] (if (< n 10) (str "0" n) (.toString n)))

(defn to-am-pm [total-minutes]
 (let [h (quot total-minutes 60)
 m (mod total-minutes 60)
 hour (if (= (mod h 12) 0) 12 (mod h 12))
 suffix (if (< h 12) "AM" "PM")]
 (str hour ":" (pad m) " " suffix)))

Solution 6-1 107

(defn to-24-hr [total-minutes]
 (str (pad (quot total-minutes 60)) (pad (mod total-minutes 60))))

Solution 6-2

In this solution, I am using setInterval to advance the animation rather than
requestAnimationFrame. This is because I don’t need smooth animation; I
really want one “frame” every 1.5 seconds.

File core.cljs
(ns ^:figwheel-always building_usage.core
 (:require [building_usage.roster :as roster]
 [building_usage.utils :as utils]
 [goog.dom :as dom]
 [goog.events :as events]))

(enable-console-print!)

(def days ["Monday" "Tuesday" "Wednesday" "Thursday"
 "Friday" "Saturday" "Sunday"])

(def buildings ["A" "B" "C" "D" "FLD" "GYM"
 "M" "N" "P"])
(def svg (.-contentDocument (dom/getElement "campus_map")))

;; define your app data so that it doesn't get over-written on reload
(defonce app-state (atom {:day "Monday" :interval 24
 :usage (roster/building-usage-map)
 :room-count (roster/room-count)
 :running false
 :interval-id nil}))

(defn update-map []
 (let [{:keys [day interval usage room-count]} @app-state]
 (doseq [b buildings]
 (let [n (get-in usage [day b interval])
 percent (/ n (room-count b))]
 (set! (.-fillOpacity
 (.-style (.getElementById svg (str "bldg_" b)))) percent)
 (set! (.-textContent(.getElementById svg (str "group_" b)))
 (str (int (* 100 (min 1.0 percent))) "%"))
))))

(defn update-atom [evt]
 (do

Appendix A, Solutions108

 (swap! app-state assoc :day (.-value (dom/getElement "day"))
 :interval (quot (utils/to-minutes (.-value (dom/getElement "time"))) 15))
 (update-map)))

(defn display-day-time [day interval]
 (set! (.-innerHTML (dom/getElement "show"))
 (str day " " (utils/to-am-pm (* 15 interval)))))

(declare advance-time)

(defn play-button [evt]
 (if (@app-state :running)
 (do
 (.clearInterval js/window (@app-state :interval-id))
 (swap! app-state assoc :running false :interval-id nil)
 (set! (.-value (dom/getElement "time")) (utils/to-am-pm (* 15 (@app-state :interval))))
 (set! (.-className (dom/getElement "edit")) "visible")
 (set! (.-className (dom/getElement "show")) "hidden")
 (set! (.-src (dom/getElement "play")) "images/play.svg"))
 (do
 (swap! app-state assoc :running true :interval-id (.setInterval js/window advance-time 1500))
 (display-day-time (@app-state :day) (@app-state :interval))
 (set! (.-className (dom/getElement "edit")) "hidden")
 (set! (.-className (dom/getElement "show")) "visible")
 (set! (.-src (dom/getElement "play")) "images/pause.svg"))))

(defn advance-time [dom-time-stamp]
 (let [{:keys [day lastUpdate interval]} @app-state
 next-interval (inc interval)]
 (if (>= next-interval 96)
 (play-button nil)
 (do
 (update-map)
 (swap! app-state assoc :interval next-interval)
 (display-day-time day next-interval)))))

(do
 (events/listen (dom/getElement "time") "change" update-atom)
 (events/listen (dom/getElement "day") "change" update-atom)
 (events/listen (dom/getElement "play") "click" play-button))

(defn on-js-reload []
 ;; optionally touch your app-state to force rerendering depending on
 ;; your application
 ;; (swap! app-state update-in [:__figwheel_counter] inc)
)

Solution 6-2 109

File index.html
<!DOCTYPE html>
<html>
 <head>
 <link href="css/style.css" rel="stylesheet" type="text/css">
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 </head>
 <body>
 <div id="app">
 <h2>Building Usage</h2>
 <p class="bigLabel">

 <select id="day" class="bigLabel">
 <option value="Monday">Monday</option>
 <option value="Tuesday">Tuesday</option>
 <option value="Wednesday">Wednesday</option>
 <option value="Thursday">Thursday</option>
 <option value="Friday">Friday</option>
 <option value="Saturday">Saturday</option>
 <option value="Sunday">Sunday</option>
 </select>

 <input class="bigLabel" id="time" value="6:00 AM" size="8"/>

 </p>

 <div>
 <object id="campus_map" data="images/campus_map.svg"
 type="image/svg+xml" style="border: 1px solid gray">
 <p>Alas, your browser can not load this SVG file.</p>
 </object>
 </div>
 <script src="js/compiled/building_usage.js" type="text/javascript"></script>
 </body>
</html>

Appendix A, Solutions110

Solution 6-3

File core.cljs
(ns ^:figwheel-always building_usage2.core
 (:require [building_usage2.roster :as roster]
 [building_usage2.utils :as utils]
 [goog.dom :as dom]
 [goog.events :as events]))

(enable-console-print!)

(def days ["Monday" "Tuesday" "Wednesday" "Thursday"
 "Friday" "Saturday" "Sunday"])

(def buildings ["A" "B" "C" "D" "FLD" "GYM"
 "M" "N" "P"])

(def building-totals (roster/room-count))

(def usage (roster/building-usage-map))

(defn make-labels [items]
 "Intersperse blank labels between the labels for the hours so that
 the number of labels equals the number of data points."
 (let [result (reduce (fn [acc item] (apply conj acc [item "" "" ""])) [] items)]
 result))

(defn create-chart [data]
 (let [ctx (.getContext (dom/getElement "chart") "2d")
 chart (js/Chart. ctx)
 ;; Note: everything needs to be converted to JavaScript
 ;; objects and arrays to make Chartjs happy.
 graph-info #js {:labels (clj->js (make-labels (range 0 24)))
 :datasets #js [#js {:label "Usage"
 :fillColor "rgb(0, 128, 0)"
 :strokeColor "rgb(0, 128, 0)"
 :highlightStroke "rgb(255, 0,0)"
 :data (clj->js data)}]}

 ;; Override default animation, and set scale
 ;; of y-axis to go from 0-100 in all cases.
 options #js {:animation false
 :scaleBeginAtZero true
 :scaleShowGridLines true
 :scaleGridLineColor "rgba(0,0,0,.05)"
 :scaleGridLineWidth 1
 :scaleShowVerticalLines true

Solution 6-3 111

 :scaleOverride true
 :scaleSteps 10
 :scaleStepWidth 10
 :scaleStartValue 0}]
 (.Bar chart graph-info options)))

(defn to-percent [counts building]
 "Convert counts of rooms occupied to a percentage;
 max out at 100%"
 (let [total (get building-totals building)]
 (map (fn [item] (min 100 (* 100 (/ item total)))) counts)))

(defn update-graph [evt]
 (let [day (.-value (dom/getElement "day"))
 building (.-value (dom/getElement "building"))
 data (if (and (not= "" day) (not= "" building))
 (to-percent (get-in usage [day building]) building)
 nil)]
 (if (not (nil? data)) (create-chart data) nil)))

(do
 (events/listen (dom/getElement "day") "change" update-graph)
 (events/listen (dom/getElement "building") "change" update-graph))

(defn on-js-reload []
 ;; optionally touch your app-state to force rerendering depending on
 ;; your application
 ;; (swap! app-state update-in [:__figwheel_counter] inc)
)

File index.html
<!DOCTYPE html>
<html>
 <head>
 <link href="css/style.css" rel="stylesheet" type="text/css"/>
 <script type="text/javascript" src="Chart.min.js"></script>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 </head>
 <body>
 <div id="app">
 <h2>Building Usage</h2>
 <p class="bigLabel">
 <select id="day" class="bigLabel">
 <option value="">Choose a day</option>
 <option value="Monday">Monday</option>
 <option value="Tuesday">Tuesday</option>
 <option value="Wednesday">Wednesday</option>

Appendix A, Solutions112

 <option value="Thursday">Thursday</option>
 <option value="Friday">Friday</option>
 <option value="Saturday">Saturday</option>
 <option value="Sunday">Sunday</option>
 </select>

 Building
 <select id="building" class="bigLabel">
 <option value="">--</option>
 <option value="A">A</option>
 <option value="B">B</option>
 <option value="C">C</option>
 <option value="D">D</option>
 <option value="FLD">FLD</option>
 <option value="GYM">Gym</option>
 <option value="M">M</option>
 <option value="N">N</option>
 <option value="P">P</option>
 </select>
 </p>

 <canvas id="chart" width="600" height="300"></canvas>

 <script src="js/compiled/building_usage2.js" type="text/javascript"></script>
 </div>
 </body>
</html>

Solution 7-1

(ns ^:figwheel-always proto.core
 (:require))

(enable-console-print!)

(defprotocol SpecialNumber
 (plus [this b])
 (minus [this b])
 (mul [this b])
 (div [this b])
 (canonical [this]))

(defn gcd [mm nn]
 (let [m (js/Math.abs mm)
 n (js/Math.abs nn)]
 (cond
 (= m n) m
 (> m n) (recur (- m n) n)

Solution 7-1 113

 :else (recur m (- n m)))))

(defrecord Rational [num denom]

 Object
 (toString [r] (str (:num r) "/" (:denom r)))

 SpecialNumber

 (canonical [r]
 (let [d (if (>= (:denom r) 0) (:denom r) (- (:denom r)))
 n (if (>= (:denom r) 0) (:num r) (- (:num r)))
 g (if (or (zero? n) (zero? d)) 1 (gcd n d))]
 (if-not (= g 0)
 (Rational. (/ n g) (/ d g))
 r)))

 (plus [this r2]
 (let [{n1 :num d1 :denom} this
 {n2 :num d2 :denom} r2
 n (+ (* n1 d2) (* n2 d1))
 d (* d1 d2)]
 (println n1 d1 n2 d2 n d)
 (if (= d1 d2)
 (canonical (Rational. (+ n1 n2) d1))
 (canonical (Rational. n d)))))

 (minus [r1 r2] (plus r1 (Rational. (- (:num r2)) (:denom r2))))

 (mul [r1 r2] (canonical (Rational. (* (:num r1) (:num r2))
 (* (:denom r1) (:denom r2)))))

 (div [r1 r2] (canonical (Rational. (* (:num r1) (:denom r2))
 (* (:denom r1) (:num r2))))))

Solution 7-2

(ns ^:figwheel-always proto.core)

(enable-console-print!)

(defprotocol SpecialNumber
 (plus [this b])
 (minus [this b])
 (mul [this b])
 (div [this b])
 (canonical [this]))

Appendix A, Solutions114

;; code for duration and rational not duplicated

(defrecord Complex [re im]
 Object
 (toString [c]
 (let [{:keys [re im]} c]
 (str (if (zero? re) "" re)
 (if-not (zero? im)
 ; note: the order of the conditions here
 ; is absoutely crucial in order to get the
 ; leading minus sign
 (str (cond
 (< im 0) "-"
 (zero? re) ""
 :else "+")
 (js/Math.abs im) "i")))))

 SpecialNumber
 (canonical [c] c)

 (plus [this other]
 (Complex. (+ (:re this) (:re other)) (+ (:im this) (:im other))))

 (minus [this other]
 (Complex. (- (:re this) (:re other)) (- (:im this) (:im other))))

 (mul [this other]
 ; better living through destructuring
 (let [{a :re b :im} this
 {c :re d :im} other]
 (Complex. (- (* a c) (* b d)) (+ (* b c) (* a d)))))

 (div [this other]
 (let [{a :re b :im} this
 {c :re d :im} other
 denom (+ (* c c) (* d d))]
 denom (+ (* c c) (* d d))]
 (println a b c d denom)
 (Complex. (/ (+ (* a c) (* b d)) denom) (/ (- (* b c) (* a d)) denom)))))

Solution 7-3

(ns ^ :figwheel-always test.test-cases
 (:require-macros [cljs.test :refer [deftest is are]])
 (:require [cljs.test :as t]
 [proto.core :as p]))

(deftest duration1

Solution 7-3 115

 (is (= (p/canonical (p/Duration. 3 84)) (p/Duration. 4 24))))

(deftest duration-str
 (are [m1 s1 expected]
 (= (str (p/Duration. m1 s1) expected))
 1 10 "1 10"
 1 9 "1 09"
 1 60 "2 00"
 3 145 "5 25"
 0 0 "0 00"))

(deftest gcd-test
 (are [x y] (= x y)
 (p/gcd 3 5) 1
 (p/gcd 12 14) 2
 (p/gcd 35 55) 5))

(deftest rational-plus
 (are [x y z]
 (let [[a b] x
 [c d] y
 [rn rd] z]
 (= (p/plus (p/Rational. a b) (p/Rational. c d)) (p/Rational. rn rd)))
 [1 2] [1 3] [5 6]
 [2 8] [3 12] [1 2]
 [0 4] [0 5] [0 20]
 [1 0] [1 0] [2 0]))

(deftest rational-minus
 (are [x y z]
 (let [[a b] x
 [c d] y
 [rn rd] z]
 (= (p/minus (p/Rational. a b) (p/Rational. c d)) (p/Rational. rn rd)))
 [6 8] [6 12] [1 4]
 [1 4] [3 4] [-1 2]
 [1 4] [1 4] [0 4]))

(deftest rational-multiply
 (are [x y z]
 (let [[a b] x
 [c d] y
 [rn rd] z]
 (= (p/mul (p/Rational. a b) (p/Rational. c d)) (p/Rational. rn rd)))
 [1 3] [1 4] [1 12]
 [3 4] [4 3] [1 1]))

(deftest rational-divide
 (are [x y z]
 (let [[a b] x

Appendix A, Solutions116

 [c d] y
 [rn rd] z]
 (= (p/div (p/Rational. a b) (p/Rational. c d)) (p/Rational. rn rd)))
 [1 3] [1 4] [4 3]
 [3 4] [4 3] [9 16]))

(deftest complex-str
 (are [r i result]
 (= (str (p/Complex. r i)) result)
 3 7 "3+7i"
 3 -7 "3-7i"
 -3 7 "-3+7i"
 -3 -7 "-3-7i"
 0 7 "7i"
 3 0 "3"))

(deftest complex-math
 (are [r1 i1 f r2 i2 r3 i3]
 (= (f (p/Complex. r1 i1) (p/Complex. r2 i2)) (p/Complex. r3 i3))
 1 2 p/plus 3 4 4 6
 1 -2 p/plus -3 4 -2 2
 1 2 p/minus 3 4 -2 -2
 1 2 p/mul 3 4 -5 10
 0 2 p/mul 3 -4 8 6
 3 4 p/div 1 2 2.2 -0.4
 1 -2 p/div 3 -4 0.44 -0.08))

Sample core.async Program 1

(ns ^:figwheel-always async1.core
 (:require-macros [cljs.core.async.macros :refer [go go-loop]])
 (:require [cljs.core.async
 :refer [<! >! timeout alts! chan close!]]))

(enable-console-print!)

(defn on-js-reload [])

(def annie (chan))
(def brian (chan))

(defn annie-send []
 (go (loop [n 5]
 (println "Annie:" n "-> Brian")
 (>! brian n)
 (if (pos? n) (recur (dec n)) nil))))

(defn annie-send []

Sample core.async Program 1 117

 (go (loop [n 5]
 (println "Annie:" n "-> Brian")
 (>! brian n)
 (when (pos? n) (recur (dec n))))))

(defn annie-receive []
 (go-loop []
 (let [reply (<! brian)]
 (println "Annie:" reply "<- Brian")
 (if (pos? reply)
 (recur)
 (close! annie)))))

(defn brian-send []
 (go-loop [n 5]
 (println "Brian:" n "-> Annie")
 (>! annie n)
 (when (pos? n) (recur (dec n)))))

(defn brian-receive []
 (go-loop []
 (let [reply (<! annie)]
 (println "Brian:" reply "<- Annie")
 (if (pos? reply)
 (recur)
 (close! brian)))))

(defn async-test []
 (do
 (println "Starting...")
 (annie-send)
 (annie-receive)
 (brian-send)
 (brian-receive)))

Sample core.async Program 2

(ns ^:figwheel-always async2.core
 (:require-macros [cljs.core.async.macros :refer [go go-loop]])
 (:require [cljs.core.async :as a
 :refer [<! >! timeout alts! chan close!]]))

(enable-console-print!)

(defn on-js-reload [])

(defn decrement! [[from-str from-chan] [to-str to-chan] & [start-value]]

Appendix A, Solutions118

 (go-loop [n (or start-value (dec (<! from-chan)))]
 (println from-str ":" n "->" to-str)
 (>! to-chan n)
 (when-let [reply (<! from-chan)]
 (println from-str ":" reply "<-" to-str)
 (if (pos? reply)
 (recur (dec reply))
 (do
 (close! from-chan)
 (close! to-chan)
 (println "Finished"))))))

(defn async-test []
 (let [annie (chan)
 brian (chan)]
 (decrement! ["Annie" annie] ["Brian" brian] 8)
 (decrement! ["Brian" brian] ["Annie" annie])))

Solution 8-1

This solution is split into two files: core.cljs and utils.cljs

File core.cljs

(ns ^:figwheel-always cardgame.core
 (:require-macros [cljs.core.async.macros :refer [go go-loop]])
 (:require [cljs.core.async
 :refer [<! >! timeout alts! chan close! put!]]
 [cardgame.utils :as utils]))

(enable-console-print!)

(def max-rounds 50) ;; max # of rounds per game

;; create a channel for each player and the dealers

(def player1 (chan))
(def player2 (chan))
(def dealer (chan))

(defn on-js-reload [])

;; I have added a player-name for debug output;
;; it's not needed for the program to work.

(defn player-process
 "Arguments are channel, channel name, and initial

Solution 8-1 119

 set of cards. Players either give the dealer cards
 or receive cards from her. They send their player
 number back to the dealer so that she can distinguish
 the inputs. The :show command is for debugging;
 the :card-count is for stopping a game after a
 given number of rounds, and the :quit command finishes the loop."
 [player player-name init-cards]
 (do
 (println "Starting" player-name "with" init-cards)
 (go (loop [my-cards init-cards]
 (let [[message args] (<! player)]
 (condp = message
 :give (do
 (println player-name
 "has" my-cards
 "sending dealer" (take args my-cards))
 (>! dealer [player-name (take args my-cards)])
 (recur (vec (drop args my-cards))))
 :receive (do
 (println player-name "receives" args "add to" my-cards)
 (>! dealer "Received cards")
 (recur (apply conj my-cards args)))
 :show (do (println my-cards) (recur my-cards))
 :card-count (do
 (>! dealer [player-name (count my-cards)])
 (recur my-cards))
 :quit nil))))))

(defn determine-game-winner
 "If either of the players is out of cards, the other player wins."
 [card1 card2]
 (cond
 (empty? card1) "Player 1"
 (empty? card2) "Player 2"
 :else nil))

(defn make-new-pile
 "Convenience function to join the current pile
 plus the players' cards into a new pile."
 [pile card1 card2]
 (apply conj (apply conj pile card1) card2))

(defn put-all!
 "Convenience function to send same message to
 all players. The (doall) is necessary to force
 evaluation."
 [info]
 (doall (map (fn [p] (put! p info)) [player1 player2])))

(defn arrange

Appendix A, Solutions120

 "Since we can't guarantee which order the cards come in,
 we arrange the dealer's messages so that player 1's card(s)
 always precede player 2's card(s)"
 [[pa ca] [pb cb]]
 (if (= pa "Player 1") [ca cb] [cb ca]))

(defn do-battle
 "Returns a vector giving the winner (if any) and the
 new pile of cards, given the current pile, the players' cards,
 and the number of rounds played.
 If someone's card is empty, the other person is the winner.
 If the number of rounds is at the maximum, the person with
 the smaller number of cards wins.
 If one player has a higher card, the other player has
 to take all the cards (returning an empty pile); if they
 match, the result is the pile plus the cards"
 [pile card1 card2 n-rounds]
 (let [c1 (utils/value (last card1))
 c2 (utils/value (last card2))
 game-winner (determine-game-winner card1 card2)
 new-pile (make-new-pile pile card1 card2)]
 (println (utils/text (last card1)) "vs." (utils/text (last card2)))
 (when-not game-winner
 (cond
 (> c1 c2) (put! player2 [:receive new-pile])
 (< c1 c2) (put! player1 [:receive new-pile])))
 [game-winner (if (= c1 c2) new-pile (vector))]))

(defn play-game
 "The game starts by dividing the shuffled deck and
 gives each player half.
 Pre-battle state: ask each player to give a card
 (or 3 cards if the pile isn't empty)
 Battle state: wait for each player to send cards and evalute.
 Post-battle: wait for person who lost hand (if not a tie)
 to receive cards
 Long-game: Too many rounds. Winner is person with most cards"
 []
 (let [deck (utils/short-deck)
 half (/ (count deck) 2)]
 (player-process player1 "Player 1" (vec (take half deck)))
 (player-process player2 "Player 2" (vec (drop half deck)))
 (go (loop [pile []
 state :pre-battle
 n-rounds 1]
 (condp = state
 :pre-battle (do
 (println "** Starting round" n-rounds)
 (put-all! [:give (if (empty? pile) 1 3)])
 (recur pile :battle n-rounds))

Solution 8-1 121

 :battle (let [d1 (<! dealer) ;; block until
 d2 (<! dealer) ;; both players send cards
 [card1 card2] (arrange d1 d2)
 [game-winner new-pile] (do-battle pile card1 card2 n-rounds)]
 (<! (timeout 300))
 (if-not game-winner
 (recur new-pile :post-battle n-rounds)
 (do
 (put-all! [:quit nil])
 (println "Winner:" game-winner))))

 :post-battle (do
 ;; wait until player picks up cards
 (when (empty? pile) (<! dealer))
 (if (< n-rounds max-rounds)
 (recur pile :pre-battle (inc n-rounds))
 (do
 (put-all! [:card-count nil])
 (recur pile :long-game 0))))
 :long-game (let [[pa na] (<! dealer)
 [pb nb] (<! dealer)]
 (put-all! [:quit nil])
 (println pa "has" na "cards.")
 (println pb "has" nb "cards.")
 (println "Winner:" (cond
 (< na nb) pa
 (> na nb) pb
 :else "tied"))))))))

File utils.cljs

(ns ^:figwheel-always cardgame.utils
 (:require))

(def suits ["clubs" "diamonds" "hearts" "spades"])
(def names ["Ace" "2" "3" "4" "5" "6" "7" "8" "9" "10"
 "Jack" "Queen" "King"])

;; If there was no card at all (nil)
;; return nil, otherwise aces are high.
(defn value [card]
 (let [v (when-not (nil? card) (mod card 13))]
 (if (= v 0) 13 v)))

(defn text [card]
 (let [suit (quot card 13)
 base (mod card 13)]
 (if (nil? card)

Appendix A, Solutions122

 "nil"
 (str (get names base) " of " (get suits suit)))))

(defn full-deck []
 (shuffle (range 0 52)))

;; give a short deck of Ace to 4 in clubs and diamonds only
;; for testing purposes

(defn short-deck []
 (shuffle (list 0 1 2 3 4 5 13 14 15 16 17 18)))

Solution 8-1 123

Setting Up Your ClojureScript
Environment

Setting Up ClojureScript

ClojureScript is a dialect of Clojure that compiles to JavaScript. Clojure is a Lisp
dialect that runs on the Java Virtual Machine. So, in order to use JavaScript,
you need Java and Clojure.

Getting Java

You can test to see if Java is already installed on your computer by opening a
command window (on Windows) or a terminal window (on Mac OSX or Linux)
and type java -version at the command line. If you get some output describ-
ing a version of Java, such as the following, you have Java installed.

java version "1.8.0_40"
 Java(TM) SE Runtime Environment (build 1.8.0_40-b26)
 Java HotSpot(TM) 64-Bit Server VM (build 25.40-b25, mixed mode)

If you get an error message, then you need to install Java. You may either
use OpenJDK or Oracle’s Java Development Kit. Follow the download and in-
stallation instructons you find there.

Getting Clojure and ClojureScript

If you want to get started quickly with ClojureScript, I recommend that you fol-
low the instructions at the aptly named ClojureScript Quick Start page. From
that page, you can download a jar file that has “the ClojureScript compiler and
the bundled REPLs without an overly complicated command line interface.”

125

B

http://openjdk.java.net/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://github.com/clojure/clojurescript/wiki/Quick-Start

Creating a ClojureScript Project

Again, using the instructions at the Quick Start page, I created a project named
sample-project. (I am sick and tired of “Hello, world!” so I did something slightly
different.)

Here is the file structure of the directory, with files organized by category
rather than alphabetical order. Notice that the project name sample-project has
a hyphen in it, but when used in a directory name, you replace the hyphen with
an underscore: sample_project.

sample_project
├── cljs.jar
├── src
│ └── sample_project
│ └── core.cljs
├── index.html
├── build.clj
├── release.clj
├── repl.clj
└── watch.clj

The cljs.jar file contains ClojureScript, downloaded from the link at the
Quick Start page.

ClojureScript File src/sample_project/core.cljs

This is the ClojureScript file for the project; it simply prints to the console.

;; remove the :require and defonce when building the release version

(ns sample-project.core
 (:require [clojure.browser.repl :as repl]))

(defonce conn
 (repl/connect "http://localhost:9000/repl"))

(enable-console-print!)

(println "It works!")

File index.html

This file has a bit more than the Quick Start file: the addition of the <meta>
element avoids a warning in the web console, and the <title> element lets

Appendix B, Setting Up Your ClojureScript Environment126

you distinguish projects from one another if you have multiple browser tabs
open.

<!DOCTYPE html>
<html>
 <head>
 <title>sample-project</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 </head>
 <body>
 <script type="text/javascript" src="out/main.js"></script>
 </body>
</html>

File build.clj

Builds an un-optimized version of the project. Run with the command

(require 'cljs.build.api)

(cljs.build.api/build "src"
 {:main 'sample-project.core
 :output-to "out/main.js"})

File release.clj

Builds an optimized version of the project.

((require 'cljs.build.api)

(cljs.build.api/build "src"
 {:output-to "out/main.js"
 :optimizations :advanced})

(System/exit 0)

File repl.clj

Builds an unoptimized version of the project and launches a browser REPL. On
Linux and MacOSX, make sure you have rlwrap installed.

(require 'cljs.repl)
(require 'cljs.build.api)
(require 'cljs.repl.browser)

(cljs.build.api/build "src"

Setting Up ClojureScript 127

 {:main 'sample-project.core
 :output-to "out/main.js"
 :verbose true})

(cljs.repl/repl (cljs.repl.browser/repl-env)
 :watch "src"
 :output-dir "out")

File watch.clj

This program watches the src directory and recompiles when any file in that di-
rectory changes.

(require 'cljs.build.api)

(cljs.build.api/watch "src"
 {:main 'sample-project.core
 :output-to "out/main.js"})

Getting A Text Editor

You can use any text editor you like to create your ClojureScript programs. The
emacs editor seems to be quite popular, with vim another popular choice. Yes,
both have plugins for support of Clojure (CIDER for emacs; Fireplace for vim).
No, I will not get involved in the theological battle between these two editors. If
you are in search of an IDE (Integrated Development Environment), you have a
number of choices there as well:

• IntelliJ IDEA with the Cursive plugin
• Light Table
• Nightcode
• Eclipse with the Counterclockwise plugin for Clojure

Appendix B, Setting Up Your ClojureScript Environment128

http://www.gnu.org/software/emacs/
http://www.vim.org/
https://github.com/clojure-emacs/cider
https://github.com/tpope/vim-fireplace
https://www.jetbrains.com/idea/
https://cursiveclojure.com/
http://lighttable.com/
https://sekao.net/nightcode/
https://github.com/laurentpetit/ccw/wiki/GoogleCodeHome

Creating a ClojureScript Project
with Leiningen

Another way to get Clojure is to use Leiningen, a tool (as the website puts it)
“for automating Clojure projects without setting your hair on fire.” Follow the
download instructions at the Leiningen website, and then, as it says, type lein.
Leiningen will download the self-install package and you will then be ready to
create ClojureScript (and Clojure) projects.

Leiningen lets you create projects based on templates. You create a new
project with a command of the form lein new template-name project-
name. There are plenty of templates out there, but the two I’m going to use in
this book are the minimal mies template and the more advanced figwheel tem-
plate.

The mies Template

Use the git utility to download the latest version and install it:

[etudes@localhost ~]$ git clone https://github.com/swannodette/mies.git
Cloning into 'mies'...
remote: Counting objects: 524, done.
remote: Total 524 (delta 0), reused 0 (delta 0), pack-reused 524
Receiving objects: 100% (524/524), 48.61 KiB | 0 bytes/s, done.
Resolving deltas: 100% (217/217), done.
Checking connectivity... done.
[etudes@localhost ~]$ cd mies
[etudes@localhost mies]$ lein install
Created /home/etudes/mies/target/lein-template-0.6.0.jar
Wrote /home/etudes/mies/pom.xml
Installed jar and pom into local repo.

Here is the file structure that came from the command lein new mies ex-
ample:

129

C

http://leiningen.org/

example
├── index.html
├── index_release.html
├── project.clj
├── README.md
├── scripts
│ ├── brepl
│ ├── build
│ ├── compile_cljsc
│ ├── release
│ ├── repl
│ └── watch
└── src
 └── example
 └── core.cljs

The project.clj file contains information about your project’s requirements
and dependencies. The scripts directory contains scripts that:

• Open a browser REPL (brepl)
• Build the development version of the project (build)
• Compile parts of the ClojureScript system so you don’t have to recompile

them every time you rebuild the project (compile_cljsc)
• Build the relase version of the project, which optimizes the compiled

JavaScript code (release)

• Open a node.js REPL (repl)
• Monitor the source directory and rebuild the project whenever a source

file changes (watch)

The core.cljs file will contain your code. For a new project, it looks like this:

(ns example.core
 (:require [clojure.browser.repl :as repl]))

;; (defonce conn
;; (repl/connect "http://localhost:9000/repl"))

(enable-console-print!)

(println "Hello world!")

The lines beginning with the two semicolons are ClojureScript comments.
The commented-out lines enable the browser REPL. You will almost certainly
want to uncomment those lines by removing the semicolons. Then you can,
from the main example folder, invoke scripts/compile_cljsc―which you need to
do only once―then build the project with scripts/build, and start the browser
REPL with scripts/brepl. All these scripts use Leiningen, which will automatically

Appendix C, Creating a ClojureScript Project with Leiningen130

retrieve any dependencies that your project needs. You will eventually see
something like this:

[etudes@localhost example]$ scripts/brepl
Compiling client js ...
Waiting for browser to connect ...
Watch compilation log available at: out/watch.log
To quit, type: :cljs/quit
cljs.user=>

AUTOMATIC COMPILATION

As set up in the mies template, the brepl script keeps track of your src
directory, and the project is recompiled whenever a file changes. The re-
sults are placed in the file out/watch.log. You can open a separate termi-
nal window and use this command: tail out/watch.log to continuously
monitor that file. If you do not want to automatically rebuild, go to the
scripts/brepl.clj file and change this line:

{:watch "src"

to this, making sure that you put the semicolons after the opening brace:

{ ;; :watch "src"

If you do this, then you must manually recompile files, and compile er-
rors will appear in the REPL window.

The figwheel Template

The figwheel template is designed to make interactive development easy. Here
is the file structure that you get from the command lein new figwheel ex-
ample2

example2
├── .gitignore
├── project.clj
├── README.md
├── resources
│ └── public
│ ├── css
│ │ └── style.css
│ └── index.html
└── src
 └── example2
 └── core.cljs

The figwheel Template 131

Figure 3-1.

Screenshot of Result
of Good Compilation

Figure 3-2.

Screenshot of Result
of Error in
Compilation

The project.clj file contains the information about your project’s require-
ments and dependencies. Your code goes in the core.cljs file. To compile and
run the code, open a terminal window and type lein figwheel, then go to
http://localhost:3449 in your browser. You will have a REPL prompt in the
terminal window, and figwheel will monitor your source directory for changes.

Figure C-1 shows the result of a good compile after making a change to the
core.cljs file; Figure C-2 shows the result of a compile error. Notice that figwheel
points out the line in the ClojureScript file where the error occurred.

Appendix C, Creating a ClojureScript Project with Leiningen132

This is not to say that mies and figwheel are the only templates you can use;
a search for clojurescript template at https://clojars.org/ will produce a whole
list of templates with varying purposes. Choose whichever works best for you.

The figwheel Template 133

https://clojars.org/

ClojureScript on the Server

ClojureScript on the Server

Just as JavaScript works in the browser and on the server, via a library like
Node.js, so does ClojureScript. In this book I’m using Node.js for the server
side.

Getting Node.js®

You can get Node.js from the download page. This will also give you npm,
Node’s package manager.

Creating a ClojureScript/Node.js Project

I created a project named node-project by following the instructions at the Clo-
jureScript Quick Start page. (I am sick and tired of “Hello, world!” so I did
something slightly different.)

Here is the file structure of the directory, with files organized by category
rather than alphabetical order. Notice that the project name node-project has a
hyphen in it, but when used in a directory name, you replace the hyphen with
an underscore: node_project.

node_project
├── cljs.jar
├── src
│ └── node_project
│ └── core.cljs
└── node.clj

The cljs.jar file contains ClojureScript, downloaded from the link at the
Quick Start page.

135

D

https://nodejs.org
https://nodejs.org/download/
https://github.com/clojure/clojurescript/wiki/Quick-Start
https://github.com/clojure/clojurescript/wiki/Quick-Start

ClojureScript File src/node_project/core.cljs

This is the ClojureScript file for the project; it simply prints to the console.

(ns node-project.core
 (:require [cljs.nodejs :as nodejs]))

(nodejs/enable-util-print!)

(defn -main [& args]
 (println "It works!"))

(set! *main-cli-fn* -main)

File node.clj

This file builds the unoptimized project.

(require 'cljs.build.api)

(cljs.build.api/build "src"
 {:main 'node-project.core
 :output-to "main.js"
 :target :nodejs})

File node_repl.clj

This file will build the project and start a REPL.

(require 'cljs.repl)
(require 'cljs.build.api)
(require 'cljs.repl.node)

(cljs.build.api/build "src"
 {:main 'hello-world.core
 :output-to "out/main.js"
 :verbose true})

(cljs.repl/repl (cljs.repl.node/repl-env)
 :watch "src"
 :output-dir "out")

Using Node.js Modules

To use a Node.js module, you need to define a binding for the library via the
js/require function. You can then use that binding’s methods and properties

Appendix D, ClojureScript on the Server136

in your ClojureScript code. The following is a REPL session that shows the use
of the built-in os module.

cljs.user=> (in-ns 'node-project.core)
node-project.core=> (def os (js/require "os"))
;; much output omitted
node-project.core=> (.hostname os)
"localhost.localdomain"
node-project.core=> (.platform os)
"linux"
example.core=> (.-EOL os) ;; this is a property
"\n"

ClojureScript on the Server 137

Index

139

	Cover
	Copyright
	Table of Contents
	Preface
	What’s an Étude?
	What are Études for ClojureScript?
	Acknowledgments

	Chapter 1. Functions and Variables
	Étude 1-1: Defining a Function in the REPL
	Étude 1-2: Defining Functions in a Source File
	Étude 1-3: Using def
	Étude 1-4: Using let
	Étude 1-5: More Practice with def and let

	Chapter 2. Interacting With JavaScript and Web Pages
	Étude 2-1: Direct use of JavaScript
	Invoking Methods
	Accessing Properties
	Creating JavaScript Objects
	Listening for Events

	Étude 2-2: Using Google Closure
	Putting Google Closure into Your Project
	Using Google Closure to Access the DOM
	Using Google Closure to Handle Events

	Étude 2-3: Using dommy
	Putting dommy into Your Project
	Using dommy to Access the DOM
	Using dommy to Handle Events

	Étude 2-4: Using Domina
	Putting Domina into Your Project
	Using Domina to Access the DOM
	Using Domina to Handle Events

	Étude 2-5: Using Enfocus
	Putting Enfocus into Your Project
	Using Enfocus to Access the DOM
	Using Enfocus to Handle Events

	Chapter 3. Lists, Vectors, and Higher-Order Functions
	Étude 3-1: Move the Zeros
	Étude 3-2: More List Manipulation
	Étude 3-3: Basic Statistics
	Étude 3-4: Basic Statistics in a Web Page
	Étude 3-5: Dental Hygiene
	Étude 3-6: Random Numbers; Generating a Vector of Vectors
	Étude 3-7: Monthly Daylight

	Chapter 4. Maps
	Étude 4-1: Condiments
	Parsing XML
	Command Line Arguments
	Mutually Recursive Functions

	Étude 4-2: Condiment Server
	Setting up Express
	Generating HTML from ClojureScript
	Putting the Étude Together

	Étude 4-3: Maps—Frequency Table
	Reading the CSV File

	Étude 4-4: Complex Maps—Cross-tabulation
	Étude 4-5: Cross-Tabulation Server

	Chapter 5. Programming with React
	Étude 5-1: Reactive Programming with Quiescent
	Hints

	Étude 5-2: Reactive Programming with Reagent
	Hints

	Chapter 6. Interlude: Room Usage Project
	Étude 6-1: Build the Data Structure
	Étude 6-2: Visualizing the Data (Version 1)
	Étude 6-3: Visualizing the Data (Version 2)

	Chapter 7. Records and Protocols
	Étude 7-1: Rational Numbers
	Étude 7-2: Complex Numbers
	Étude 7-3: Writing Tests

	Chapter 8. Asynchronous processing
	Étude 8-1: TBD
	The Art of War
	War: What is it good for?
	Pay Now or Pay Later
	The Design
	Messages Are Asynchronous
	Representing the Deck

	Appendix A. Solutions
	Solution 1-2
	Solution 1-3
	Solution 1-4
	Solution 1-5
	Solution 2-1
	Solution 2-2
	Solution 2-3
	Solution 2-4
	Solution 2-5
	Solution 3-1
	Solution 3-2
	Solution 3-3
	Solution 3-4
	Solution 3-5
	Solution 3-6
	Solution 3-7
	Solution 4-1
	Solution 4-2A
	Solution 4-2B
	Solution 4-3
	File cljs_made_easy/line_seq.clj
	File cljs_made_easy/line_seq.cljs
	File frequency/core.cljs

	Solution 4-4
	Solution 4-5
	Solution 5-1
	Solution 5-2
	Solution 6-1
	File building_usage/src/roster.cljs
	File building_usage/src/utils.cljs

	Solution 6-2
	
	

	Solution 6-3
	
	

	Solution 7-1
	Solution 7-2
	Solution 7-3
	Sample core.async Program 1
	Sample core.async Program 2
	Solution 8-1
	File core.cljs
	File utils.cljs

	Appendix B. Setting Up Your ClojureScript Environment
	Setting Up ClojureScript
	Getting Java
	Getting Clojure and ClojureScript
	Creating a ClojureScript Project
	ClojureScript File src/sample_project/core.cljs
	File index.html
	File build.clj
	File release.clj
	File repl.clj
	File watch.clj
	Getting A Text Editor

	Appendix C. Creating a ClojureScript Project with Leiningen
	The mies Template
	The figwheel Template

	Appendix D. ClojureScript on the Server
	ClojureScript on the Server
	Getting Node.js®
	Creating a ClojureScript/Node.js Project
	ClojureScript File src/node_project/core.cljs
	File node.clj
	File node_repl.clj
	Using Node.js Modules

	Index

